US ERA ARCHIVE DOCUMENT

Glenn Springs Holdings, Inc.

Clint Babcock Project Manager Direct Dial (972) 687-7506 5005 LBJ Freeway, Suite 1350 Dallas, TX 75244-6119 Facsimile (972) 687-7524

October 12, 2011

Mr. Kenneth S. Bardo
U.S. Environmental Protection Agency Region 5
77 West Jackson Boulevard
Corrective Action Section (LU-9J)
Chicago, IL 60604-3590

SUBJECT:

Occidental Chemical Corporation, Montague, Michigan - MID 006 014 906

August 2111 Soil Gas Sampling Results

South of Old Channel Trail near Montague, Michigan

Dear Mr. Bardo:

Glenn Springs Holdings, Inc. (GSH) has completed the August 2011 gas sampling event proposed in the Interim Update on First Round Soil Gas Sampling Results and Work Plan Addendum for Soil Gas Investigation South of Old Channel Trail near Montague, Michigan (July 7, 2011). The results and conclusions from the 2nd soil gas sampling event are presented.

As proposed in the work plan, a final report of findings will be issued after the final sampling event scheduled in November 2011.

If you have any questions concerning this information, please contact me at (972) 687-7506 or on my cell at (859)421-4233.

Sincerely,

Glenn Springs Holdings, Inc.

Clint Babcock Project Manager

Enclosures

c: Dan Dailey, MDEQ (P.O. Box 30241, Lansing, MI 48909)

Joe Branch, GSH

James Tolbert, AECOM (electronic only)

Barry Harding, AECOM

File 60215783

A=COM

Soil Gas Sampling Results for Soil Gas Investigation, Second Sampling Event August 2011 South of Old Channel Trail near Montague, Michigan

Glenn Springs Holdings, Inc.

MID 006 014 906

A=COM

Glenn Springs Holdings, Inc.

MID 006 014 906

Contents

1.0	Introduction	1
	Soil Gas Monitoring Point Installation	
	Soil Gas Purging and Sampling	
	Field Quality Assurance	
	Analytical Results	
	5.1 Comparison to May 2011 Results	
6.0	Applicable Attenuation Factors	7
7.0	Soil-Gas Comparisons to Screening Levels	8
8.0	Future Work	9
Ref	erences	10

Figures

Figure 1 – Soil Gas Monitoring Point Location Map

Tables

- Table 1 Summary of Soil Gas Results Collected in August 2011
- Table 2 Comparison of Soil Gas Results Collected in May and August 2011
- Table 3 U.S. EPA Regional Screening Level Calculator Output Site-Specific Resort Worker Exposure Scenario

Appendices

Appendix A - Soil Boring & SGMP Construction Logs

Appendix B – Laboratory Analytical Report

Appendix C - Soil Gas Sampling Field Forms

Appendix D - Carbon Dioxide and Oxygen Soil Gas Measurements

ii

Acronyms

Accutest Laboratories

AF attenuation factor

c-1,2-DCE cis-1,2-dichloroethylene

CT carbon tetrachloride

FD Final Decision

Ft bgs Feet below ground surface
GSH Glenn Springs Holdings, Inc.

HCA Hexachloroethane

HI hazard index
HQ hazard quotient
IPA isopropyl alcohol
ml/min milliliters per minute

OCC Occidental Chemical Company

PCE Tetrachloroethene

ppbv parts per billion by volume

RSL Regional Screening Level

SGMP Soil Gas Monitoring Points

t-1,2-DCE trans-1,2-dichloroethylene

TCE trichloroethylene

ug/m³ micrograms per cubic meter

U.S. EPA United States Environmental Protection Agency

1.0 Introduction

Occidental Chemical Corporation (OCC) operated a chemical plant on Old Channel Trail in Montague Township, Michigan ("Site"). At this Site, OCC produced several products such as chlorine gas from 1954 through 1982 and hexachlorocyclopentadiene (C-56) from 1954 through 1977. Significant remedial activities were completed from 1979 through 1982 under a consent judgment with the State of Michigan. All of the manufacturing operations for C-56 were removed from the site or placed in an on-site secure landfill, and waste materials and impacted soils were excavated and placed in the on-site secure landfill. A stable and well-defined groundwater plume is present at the Site.

Currently, Glenn Springs Holdings, Inc. (GSH) operates the groundwater collection and treatment system, provides post-closure care for the landfill, and maintains the Site. GSH also complies with the requirements of the Resource Conservation and Recovery Act Corrective Action under an administrative order with the United States Environmental Protection Agency (U.S. EPA). GSH is an affiliate of OCC.

Due to complex remedial challenges at the Site, a *Post-Implementation Technical Impracticability Evaluation for Groundwater Restoration Report* was prepared and submitted to the U.S. EPA Region 5 for the Former OCC facility (U.S. EPA I.D. No. MID 006 014 906) (AECOM, 2009). The Technical Impracticability Evaluation was approved by the U.S. EPA on October 13, 2010 in an Amended Final Decision and Response to Comments for Selection of Updated Corrective Measures document (the Amended Final Decision (FD), U.S. EPA, 2010). The Amended FD from U.S. EPA required submitting a work plan to the U.S. EPA to "characterize the vertical concentration of volatile organic compounds and hexachloroethane (HCA) in soil gas above the defined groundwater contaminant plume south of Old Channel Trail, including the locations of potential receptors at private residences along Old Channel Trail and McFall Drive, and estate buildings on OCC property."

This update summarizes the soil gas monitoring point (SGMP) installation and analytical results from the initial soil gas sampling event completed in May 2011 and focuses on results of the second soil gas sampling event in August 2011. Results from May 2011 are included for comparative purposes. Data are presented with a preliminary screening. A more complete evaluation of data will occur after the third sampling event and a final report will be prepared for U.S. EPA.

The soil gas investigation was performed following the Work Plan dated February 7, 2011 (AECOM, 2011) and approved by the U.S. EPA on March 7, 2011. Installation of two additional SGMP and the August sampling event was proposed to Region 5 EPA in the *Interim Update on First Round Soil Gas Sampling Results and Work Plan Addendum for Soil Gas Investigation* document dated July 7, 2011. U.S. EPA provided verbal approval of the work plan addendum in a telephone conference with AECOM and GSH staff on July 26, 2011.

2.0 Soil Gas Monitoring Point Installation

SGMP-01 through SGMP-07 were installed at the Site from May 16 to 18, 2011 using direct-push Geoprobe for intermediate and deep SGMPs and hand-auger methods in the shallow SGMPs. On August 4, 2001, SGMP were installed at two additional locations, SGMP-08 and SGMP-09, with monitoring points at the 5-foot, 15-foot and 30-foot depths. These SGMPs were installed to monitor soil gas along the eastern flank of the groundwater plume. SGMP-08 and SGMP-09 are also located adjacent to residences located along Pack Street. All SGMPs are on OCC property and not on property used for full-time residences. The SGMP locations are shown on **Figure 1**.

- A total of 27 SGMPs are installed at nine locations overlying the groundwater plume. SGMP-08 and SGMP-09 are on the extreme eastern edge of the plume.
- SGMPs were installed in separate boreholes at depths of 4.5 to 5-feet (S), 14.5 to 15 feet (I) and 29.5 to 30 feet (D) at all nine locations.
- Three SGMPs are located within the OCC property, away from the property boundary and away from residential receptors. SGMP-01 (S, I and D) and SGMP-02 (S, I and D) were installed proximal to the Occidental Conference Building. SGMP-03 (S, I and D) was installed over the central portion of the groundwater plume near the purge well network.
- SGMP-08 (S, I and D) and SGMP-09 (S, I and D) are installed just west of Pack Street on OCC property, near residential receptors.
- Four SGMPs are located on OCC property at locations near off-site residential property located over the western portion of the plume south of Old Channel Trail. SGMP-04 (S, I and D) is installed approximately 500 feet east of McFall Circle. SGMP-06 (S, I and D) and SGMP-07 (S, I and D) are installed up gradient and north of residences on Blueberry Ridge Drive. SGMP-05 (S, I and D) is installed over the central portion of the groundwater plume close to the boundary of residential property.
- Soil encountered was predominately fine grain sand, with medium grain horizons, including at SGMP-08 and SGMP-09.
- No volatile organic compounds were detected in soils during field screening with photo-ionization detector used during the installation of the SGMPs.
- No odors were observed while installing the SGMPs.
- All SGMPs were completed with stick-up pro-style covers.

Soils were logged by certified professional geologist using the Unified Soil Classification System. Soil boring and SGMP construction logs for SGMP-8 and SGMP-09 are presented in **Appendix A.**

3.0 Soil Gas Purging and Sampling

The second soil gas purging and sampling event was performed during the week of August 15, 2011. A total of 20 soil gas samples and one duplicate sample were collected from SGMP-01 through SGMP-09 locations. The shallow and intermediate sample depths were collected at SGMP-01 through SGMP-07. The shallow, intermediate and deep samples were collected at SGMP-08 and SGMP-09. Samples SGMP-08D-1 and SGMP-08D-2 are duplicate samples collected concurrently from SGMP-08D using a T-connector. SGMP-08D-1 is the primary sample, and sample SGMP-08D-2 is the duplicate sample which serves as a sample to verify data reproducibility.

Soil gas sampling was performed at a rate of approximately 150 ml/min using 6-liter capacity Summa canisters from August 15 through August 17, 2011. During sampling, isopropyl alcohol (IPA) was present at the ground surface to evaluate leakage at all sampling points. Oxygen and carbon dioxide measurements were collected at each SGMP during purging. The soil gas samples were shipped to Accutest Laboratories (Accutest), New Jersey, under chain-of-custody documentation and analyzed using TO-15 for target analytes, as specified in the work plan. The samples arrived at Accutest during the week of August 15, 2011. All samples were analyzed within the recommended method hold time. All method blanks for the samples met TO-15 method specific criteria.

Tabulated analytical results for the August 2011 event are presented in **Table 1**, and for May and August 2011 in **Table 2**. Laboratory analytical results are presented in **Appendix B**. SGMP sampling forms are attached in **Appendix C**.

4.0 Field Quality Assurance

During the August 2011 sampling event, 91% grade IPA was used to verify integrity of above-grade sample line connections from the SGMP to the summa canisters. IPA concentrations in the collected soil gas samples ranged from 0.96 ppbv (SGMP-09S) to 177 ppbv (SGMP-08I). The IPA concentrations are orders of magnitude below the concentration that would suggest a leak or compromised soil gas sample of 100 ug/m³ IPA (approximately 40,000 ppbv of IPA at standard temperature and pressure) (see the letter from GSH to the U.S. EPA dated March 22, 2011).

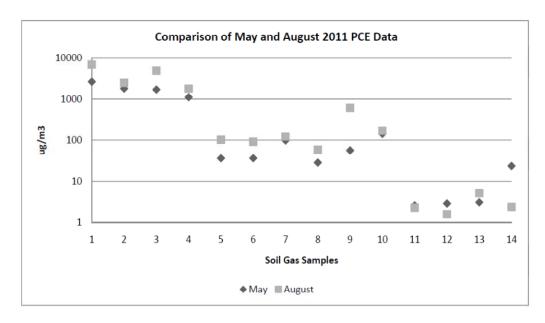
During soil gas purging, carbon dioxide and oxygen were measured using a GEM™ landfill gas meter. Carbon dioxide concentrations in soil gas were higher than in ambient air conditions. Oxygen concentrations in soil gas were generally slightly lower or the same as in ambient air. Site soil gas falls within the range for naturally occurring concentrations in soil gas for carbon dioxide, approximately 0.5% and oxygen 15 to 21% (AFCEE, 2011). Carbon dioxide and oxygen concentrations are summarized in **Appendix D**.

Tetrachloroethene (PCE) was detected at a concentration of 1.7 ug/m³ at SGMP-08D-1 and 1.8 ug/m³ at SGMP-08D-1, indicating little data variability at the duplicate sample location.

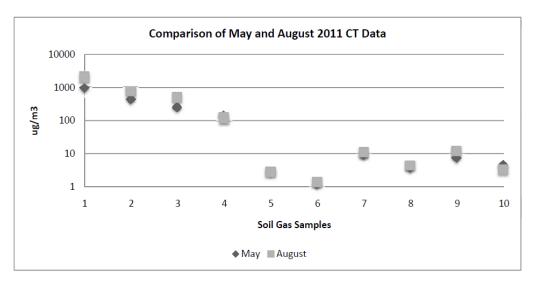
5.0 Analytical Results

During the August 2011 sampling event, compounds reported above method detection limits in soil gas include carbon tetrachloride (CT), chloroform, trichloroethylene (TCE) and PCE. Hexachloroethane (HCA), cis-1,2-dichloroethylene (c-1,2-DCE) and trans-1,2-dichloroethylene(t-1,2-DCE) were not reported above method detection limit at any SGMP.

- Chloroform was infrequently detected, and ranged from not detectable (< 0.14 ug/m³) to 4.9 ug/m³ (SGMP-02S).
- CT ranged from not detectable (<1.3 ug/m³) to 2,100 ug/m³ (SGMP-01I).
- TCE ranged from not detectable (<0.21 ug/m³) to 2.3 ug/m³ (SGMP-01I).
- PCE was detected at all 20 SGMPs with concentrations from 0.81 ug/m³ (SGMP-08S) to 6,980 ug/m³ (SGMP-01I).


In general, compound concentrations decreased from the intermediate SGMP to the shallow SGMP at all locations, consistent with a diffusion-driven soil gas system in the sandy soil column. Three depths were sampled at the new SGMP. PCE was reported at concentrations of 1.7 ug/m³ (30-foot depth), 2.9 ug/m³ (15-foot depth) and 0.81 ug/m³ (5 -foot depth). PCE was reported at concentrations of 16 ug/m³ (30-foot depth), 14 ug/m³ (15-foot depth) and 5.7 ug/m³ (5-foot depth) at SGMP-09.

Tabulated analytical results for May and August 2011 are attached in **Table 2**.


5.1 Comparison to May 2011 Results

Concentrations detected at each SGMP in May and August 2011 are comparatively consistent. There are 24 pairs of analyses for the same SGMP for PCE and CT, the two main constituents identified. Of these 24 constituents, the August sample was within a factor of three of the May sample in 22 of the 24 samples.

PCE is the only compound consistently found in all SGMPs. A comparison of PCE concentrations at SGMP-01 through SGMP-07 (shallow and intermediate depths) indicates that less variation in concentrations occurred in the shallow SGMP versus the intermediate SGMP. The graph below shows PCE concentrations from 14 paired soil gas samples (soil gas samples 1 and 2 correspond to the intermediate and shallow sample depths, respectively at SGMP-01).

CT is the second most common constituent found in soil gas at the site. A comparison of CT concentrations at SGMP-01 through SGMP-05 (shallow and intermediate depths) indicates a low variability in CT concentrations from May to August sampling events. The graph below shows CT concentrations from 20 soil gas samples (soil gas samples 1 and 2 correspond to the intermediate and shallow sample depths, respectively at SGMP-01).

Additional information regarding data variability and reproducibility will be discussed in a report after the third sampling event.

6.0 Applicable Attenuation Factors

Applicable Attenuation Factors (AF) for the Site are U.S. EPA's suggested and conservative values of 0.1 and 0.01 for shallow and deep samples, respectively. Shallow soil gas is defined as soil gas collected equal to 5 feet below ground surface (ft bgs), and deep soil gas is defined as soil gas collected deeper than 5-ft bgs (U.S. EPA, 2008).

7.0 Soil-Gas Comparisons to Screening Levels

A comparison of the soil gas analytical results to risk-based soil gas screening levels was performed and is presented on **Tables 1 and 2**. Risk-based soil gas screening levels were derived by dividing the indoor air risk-based screening level for a residential or estate worker exposure scenario, described further in the next two paragraphs, by the soil gas to indoor air attenuation factors (see Section 6.0).

For sample locations SGMP-01, SGMP-02, and SGMP-03 located near the on-site estate facilities, risk-based indoor air screening levels were derived to be protective of the estate workers and guest who occupy the buildings intermittently. These workers are assumed present up to 20 days per year, 24 hours per day, for a 25-year period based on reported property use. The assumed 25-year exposure duration is the U.S. EPA's recommended default for a worker exposure scenario. The risk-based indoor air screening levels protective of estate workers were derived using the U.S. EPA's Regional Screening Level (RSL) on-line calculator (http://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search) for a site-specific exposure scenario for a worker in the estate area buildings using the exposure assumptions discussed above, a target risk level of 1x10⁻⁵ and target hazard quotient (HQ) of 1. The RSL calculator output showing the derived screening levels specific to an estate worker scenario is presented in **Table 3**.

For sample locations SGMP-04, SGMP-05, SGMP-06, SGMP-07, SGMP-08 and SGMP-09, indoor air screening levels are equal to the published U.S. EPA RSLs (June 2011) for residential air, based on an exposure frequency of 350 days-per-year, an exposure time of 24-hours-per-day, an exposure duration of 30 years, and a target risk level of 1x10⁻⁵ and target HQ of 1.

Table 1 presents the analytical soil gas results collected in the August 2011 sampling event and a comparison of these results to the risk-based soil gas screening levels discussed above. As shown on **Table 1**, PCE was the only compound detected above soil gas screening levels in the August 2011 sampling event. PCE was detected at concentrations above the soil gas screening level in shallow soil gas (5 ft bgs) at four locations including SGMP-01S, SGMP-02S, SGMP-04S, and SGMP-05S and in intermediate soil gas (15 ft bgs) at one location, SGMP-05I. SGMP-01 and SGMP-02 are in the on-site estate facility area and SGMP-04 and SGMP-05 are in the residential area. The SGMPs located within the residential area (SGMP-06S,I) and SGMP-07S,I) did not contain any target compounds at concentrations exceeding the soil gas screening levels.

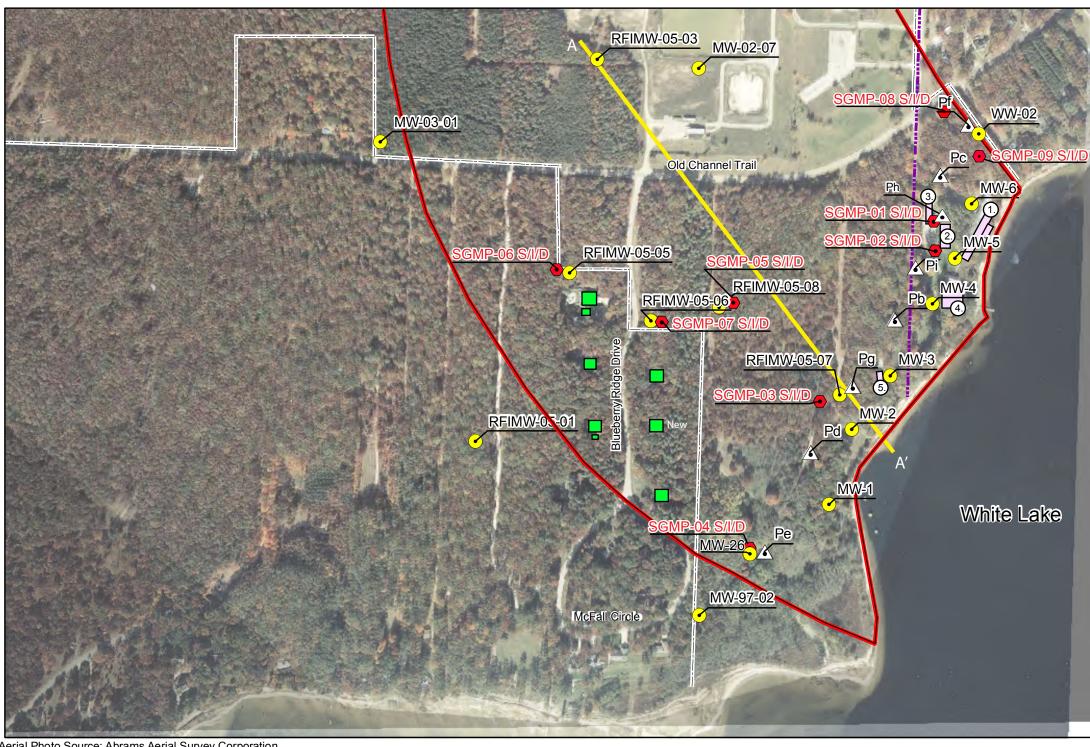
Table 2 presents the analytical soil gas results collected in both the May 2011 and August 2011 sampling events and a comparison of these results to the risk-based soil gas screening levels discussed above. As shown on **Table 2**, PCE is the only compound detected in soil gas at concentrations above the soil gas screening levels in either of the May 2011 or August 2011 sampling events. In the May 2011 event, PCE was detected at concentrations above the soil gas screening level in shallow soil gas at three of the four locations showing exceedances in the August 2011 sampling event, including SGMP-01S, SGMP-02S, and SGMP-05S. PCE was also detected in deep soil vapor (30 ft bgs) in the May 2011 sampling event above the soil gas screening level at one location, SGMP-05D. Two of these locations are in the on-site estate facility area and one of the locations is near the off-site residential area.

No exceedances were observed in soil gas collected from SGMP-08 and SGMP-09, indicating these two locations adequately delineate the boundary of any soil gas on the eastern boundary of the OCC property.

8.0 Future Work

GSH has completed two rounds of soil gas sampling as described in the approved Work Plan (AECOM, 2011a), and Work Plan Addendum (AECOM, July 7, 2011b). During this event, an evaluation of the cumulative risk or hazard index from all of the compounds detected has not been performed at this time, as requested by U.S. EPA in telephone conference On June 26, 2011

GSH will complete a third round of soil gas samples as scheduled in November 2011. Moving forward, future work at the Site will include:


- Continue to implement the third round of air sampling from the approved Work Plan in November 2011.
- Upon completion of the third round of sampling, GSH will prepare a Final Report of Findings as described in the approved work plan.
- As part of the Final Report of Findings, GSH will prepare additional evaluation and recommendations for potential investigation or remedial responses at the Site.

References

- AECOM, 2009. Post-Implementation Technical Impracticability Evaluation for Groundwater Restoration at the Occidental Chemical Corporation Site in Montague, Michigan.
- AECOM, 2011. Work Plan for Soil Gas Investigation South of Old Channel Trail near Montague, Michigan, Version 1.0.
- AECOM, 2011b. Interim Update on the First Round Soil Gas Sampling Results and Work Plan Addendum for Soil Gas Investigation South of Old Channel Trail near Montague, Michigan.
- AFCEE, 2011. On-line Access June 23, 2011:

 http://www.afcee.af.mil/resources/technologytransfer/programsandinitiatives/bioventing/sitescreening/index.asp
- GSH, March 22, 2011. Response to EPA Comments, dated March 7, 2011.
- U.S. EPA, 2002. Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils.
- U.S. EPA, 2008. Draft U.S. EPA's Vapor Intrusion Database: Preliminary Evaluation of Attenuation factors, Office of Solid Waste, U.S. EPA, Washington, DC.
- U.S. EPA, 2010. Amended Final Decision and Response Comments for Occidental Chemical Corporation, Montague Township, Michigan.
- U.S. EPA, 2011a. Approval of Soil Gas Investigation Work Plan, letter to GSH, dated March 7, 2011.
- U.S. EPA, 2011b. On-line VI Database Tool https://iavi.rti.org/OtherDocuments.cfm?PageID=documentDetails&AttachID=369
- U.S. EPA's RSL on-line calculator (http://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search)

Figures

Aerial Photo Source: Abrams Aerial Survey Corporation

500 1,500 1,000 2,000 Feet

Glenn Springs Holdings Property Soil Gas Monitoring Points **S**= 5' **|** = 15' D = 30'---- Montague Township Boundary Impacted Groundwater Cross section Location Residential Building Occidental Buildings (Part-Time Occupancy) 1) Recreation Hall (2) Conference Building 3 3 Bedroom Laundry Building (4) White House

Monitoring Well

Ph 🛕 Purge Well

MW-05-02 •

AECOM

(5) Caretaker's House

5555 Glenwood Hills Parkway, SE Suite 300 Grand Rapids, MI 49512 (616) 942-9600

DRAWN BY: C.Plank	DATE: June, 2011
CHECKED BY: BH	EDITED BY:

FILE NAME:

FIGURE 1

Soil Gas Monitoring Points Location Map, June 2011

Former Occidental Chemical Site Montague, MI

PROJECT NUMBER

60143500

SCALE: As shown

Tables

Table 1 Summary of Soil Gas Results Collected in August 2011 Former Occidental Chemical Facility Montague, Michigan

Client Sample ID:			reening Levels a)(c)		SGMP-01I	SGMP-01S	SGMP-02I	SGMP-02S	SGMP-03I	SGMP-03S	
Lab Sample ID:			ecific Indoor Exposure)		JA84264-2	JA84264-1	JA84264-4	JA84264-3	JA84264-6	JA84264-5	
Date Sampled:	UNITS	Shallow Intermediate/			8/15/2011	8/15/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	
Matrix:		5'	Deep 15' and 30'		Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	
iviatrix.		(AF = 0.1)	(AF = 0.01)		Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	
					_	ND OF CONF DG		ND OF CONF DG	-	5-07 PLUME OXY RESORT	
GC/MS Volatiles (TO-15)											
Chloroform	ug/m3	222	2,220		1.6	4.3	ND (0.98)	4.9	ND (0.98)	ND (0.98)	
Carbon tetrachloride	ug/m3	852	8,520		2100	761	502	121	2.8	1.4	
trans-1,2-Dichloroethylene	ug/m3	11,000	110,000		ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	
cis-1,2-Dichloroethylene	ug/m3	11,000	110,000	(d)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	
Hexachloroethane	ug/m3	1,280	12,800		ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	
Tetrachloroethylene	ug/m3	866	8,660		6980	2480	4950	1800	102	91.5	
Trichloroethylene	ug/m3	1,830	18,300		2.3	1.5	0.81	0.70	ND (0.21)	1.5	
TRACER	RACER						•				
Isopropyl Alcohol	ppbv	NA NA			0.55	0.25	10.9	6.8	7.2	12.2	

Client Sample ID:		Soil Gas So	reening Levels		SGMP-04I	SGMP-04S	SGMP-05I	SGMP-05S	SGMP-06I	SGMP-06S	SGMP-07I	SGMP-07S	SGMP-08D-1	SGMP-08D-2	SGMP-08I	SGMP-08S	SGMP-09D	SGMP-09I	SGMP-09S
Lab Sample ID:	1	(Resident	(b) ial Exposure)		JA84264-8	JA84264-7	JA84264-10	JA84264-9	JA84264-12	JA84264-11	JA84264-14	JA84264-13	JA84264-17	JA84264-18	JA84264-16	JA84264-15	JA84264-21	JA84264-20	JA84264-19
Date Sampled:	UNITS	Shallow	Intermediate/		8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/16/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011
Matrix:		5'	Deep 15' and 30'		Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas
iviatrix.		(AF = 0.1)	(AF = 0.1) $(AF = 0.01)$		Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.
				MW-26 / Pe		RFI-MW-05 CENTE	-08 PLUME ERLINE		5 BLUEBERRY DGE	RFI-MW-05-06 BLUEBERRY RIDGE				NEW	SGMP EAST F	LANK			
GC/MS Volatiles (TO-15)																			
Chloroform	ug/m3	11	110		1.4	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)
Carbon tetrachloride	ug/m3	41	410		11	4.4	12	3.3	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)
trans-1,2-Dichloroethylene	ug/m3	630	6,300		ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)
cis-1,2-Dichloroethylene	ug/m3	630	6,300	(d)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)
Hexachloroethane	ug/m3	61	610		ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)
Tetrachloroethylene	ug/m3	41	410		123	59	613	168	2.3	1.6	5.2	2.4	1.7	1.8	2.9	0.81	16	14	5.7
Trichloroethylene	ug/m3	100	1,000		ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)
TRACER	RACER																		
Isopropyl Alcohol	ppbv	NA	NA		5.3	7.4	3.2	24.7	3.9	0.96	33.9	17.8	75.5	120	177	131	30.7	22.7	28.3

Notes:

AF - Attenuation Factor.

NA - Not applicable.

ND - Not detected above laboratory reporting limit (presented in parentheses).

RSL - Regional Screening Level. U.S. EPA Regional Screening Level Table (June, 2011).

U.S. EPA - United States Environmental Protection Agency.

Bold/shaded values are detected above the associated soil vapor screening level.

Yellow shading represents a shallow soil vapor sample.

Blue shading represents an intermediate soil vapor sample

Pink shading represents a deep soil vapor sample.

- (a) Soil gas screening levels protective of a site-specific indoor worker scenario are equal to the U.S. EPA RSLs derived based on site-specific exposure assumptions representative of an indoor worker at the Occidental Resort (based on a 1x10-5 target risk level and target hazard quotient of 1) divided by US.E PA's default attenuation factors ((0.1 for shallow soil gas less than or equal to 5 feet in depth and 0.01 for intermediate and deep soil gas greater than 5 feet in depth).
- (b) Soil gas screening levels protective of a residential scenario are equal to the US.E PA RSLs for residential air (based on a 1x10-5 target risk level and target hazard quotient of 1) divided by USEPA's default attenuation factors (0.1 for shallow soil gas less than or equal to 5 feet in depth and 0.01 for intermediate and deep soil gas greater than 5 feet in depth).
- (c) Soil gas collected from SGMP-4, 5, 6, 7, 8, and 9 are compared to soil gas screening levels protective of residential exposure because these soil gas points are located in or nearby a residential area.

 Soil gas collected from SGMP-1, 2, and 3 are compared to soil gas screening levels protective of a site-specific indoor worker exposure because these soil gas points are located in the vicinity of the on-site estate facilities where indoor workers are the most sensitive receptors.
- (d) Value for cis-1,2-dichloroethylene is not available. Therefore, the value for trans-1,2-dichloroethylene is used due to structural similarities.

Table 2 Summary of Soil Gas Results Collected in May and August 2011 Former Occidental Chemical Facility Montague, Michigan

Client Sample ID:			Goil Gas Screening Levels (a)(c)		SGMP-01D	SGMP-01I	SGMP-01I	SGMP-01S	SGMP-01S	SGMP-02D	SGMP-02I	SGMP-02I	SGMP-02S	SGMP-02S	SGMP-03D-1	SGMP-03D-2	SGMP-03I	SGMP-03I	SGMP-03S	SGMP-03S
Lab Sample ID:		(Site-specific Indoor Worker Exposure)			JA76953-3	JA76953-2	JA84264-2	JA76953-1	JA84264-1	JA76953-6	JA76953-5	JA84264-4	JA76953-4	JA84264-3	JA76953-9	JA76953-10	JA76953-8	JA84264-6	JA76953-7	JA84264-5
Date Sampled:	UNITS	Shallow	Intermediate/		5/23/2011	5/23/2011	8/15/2011	5/23/2011	8/15/2011	5/23/2011	5/23/2011	8/16/2011	5/23/2011	8/16/2011	5/24/2011	5/24/2011	5/24/2011	8/16/2011	5/24/2011	8/16/2011
Madeire		5'	Deep 15' and 30'		Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas
Matrix:		(AF = 0.1)	(AF = 0.01)		Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.
						AT NORTH	HEND OF CON	NF BLDG			AT SOUT	H END OF CO	NF BLDG			RFI-MW-05	-07 PLUME CENTERLINE OXY RESORT			
GC/MS Volatiles (TO-15)															SPLIT	SPLIT				
Chloroform	ug/m3	222	2,220		ND (0.54)	ND (0.54)	1.6	2.3 J	4.3	ND (0.54)	ND (0.14)	ND (0.98)	4.5	4.9	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.98)	ND (0.14)	ND (0.98)
Carbon tetrachloride	ug/m3	852	8,520		2090	975	2100	432	761	686	251	502	138	121	5.9	6	2.8	2.8	1.2 J	1.4
trans-1,2-Dichloroethylene	ug/m3	11,000	110,000		ND (0.52)	ND (0.52)	ND (0.79)	ND (0.52)	ND (0.79)	ND (0.52)	ND (0.13)	ND (0.79)	ND (0.13)	ND (0.79)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.79)	ND (0.13)	ND (0.79)
cis-1,2-Dichloroethylene	ug/m3	11,000	110,000	(d)	ND (0.59)	ND (0.59)	ND (0.79)	ND (0.59)	ND (0.79)	ND (0.59)	ND (0.15)	ND (0.79)	ND (0.15)	ND (0.79)	ND (0.15)	ND (0.15)	ND (0.15)	ND (0.79)	ND (0.15)	ND (0.79)
Hexachloroethane	ug/m3	1,280	12,800		ND (0.96)	ND (0.96)	ND (1.9)	ND (0.96)	ND (1.9)	ND (0.96)	ND (0.25)	ND (1.9)	ND (0.25)	ND (1.9)	ND (0.25)	ND (0.25)	ND (0.25)	ND (1.9)	ND (0.25)	ND (1.9)
Tetrachloroethylene	ug/m3	866	8,660		5050	2640	6980	1800	2480	3610	1700	4950	1110	1800	199	203	37	102	37	91.5
Trichloroethylene	ug/m3	1,830	18,300		12	1.1	2.3	0.97	1.5	4.6	0.54	0.81	0.39	0.70	ND (0.18)	ND (0.18)	ND (0.18)	ND (0.21)	ND (0.18)	1.5
TRACER	RACER																			
Isopropyl Alcohol	ppbv	NA	NA		3.7	0.95	0.55	ND	0.25	0.89	2.1	10.9	1.2	6.8	2.6	2.9	5.1	7.2	7.7	12.2

Client Sample ID:		Soil Gas Sc	reening Levels		SGMP-04D	SGMP-04I	SGMP-04I	SGMP-04S	SGMP-04S	SGMP-05D	SGMP-05I	SGMP-05I	SGMP-05S	SGMP-05S	SGMP-06D	SGMP-06I	SGMP-06I	SGMP-06S	SGMP-06S	SGMP-07D	SGMP-07I	SGMP-07I	SGMP-07S	SGMP-07S
Lab Sample ID:		(Resident	(b) ial Exposure)	T.	JA76953-12	JA76953-11	JA84264-8	JA76953-22	JA84264-7	JA76953-15	JA76953-14	JA84264-10	JA76953-13	JA84264-9	JA76953-18	JA76953-17	JA84264-12	JA76953-16	JA84264-11	JA76953-21	JA76953-20	JA84264-14	JA76953-19	JA84264-13
Date Sampled:	UNITS	Shallow	Intermediate/		5/24/2011	5/24/2011	8/16/2011	5/26/2011	8/16/2011	5/24/2011	5/24/2011	8/16/2011	5/24/2011	8/16/2011	5/24/2011	5/24/2011	8/16/2011	5/24/2011	8/16/2011	5/25/2011	5/25/2011	8/17/2011	5/25/2011	8/17/2011
Matrice	1	5'	Deep 15' and 30'		Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas
Matrix:		(AF = 0.1)	(AF = 0.01)		Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.
	-						MW-26 / Pe				RFI-MW-05	-08 PLUME CE	NTERLINE			RFI-MW-05	5-05 BLUEBER	RY RIDGE			RFI-MW-0	5-06 BLUEBER	RY RIDGE	
GC/MS Volatiles (TO-15)																								
Chloroform	ug/m3	11	110		15	1	1.4	ND (0.14)	ND (0.98)	ND (0.14)	ND (0.14)	ND (0.98)	ND (0.14)	ND (0.98)	ND (0.14)	ND (0.14)	ND (0.98)	ND (0.14)	ND (0.98)	ND (0.14)	ND (0.14)	ND (0.98)	ND (0.14)	ND (0.98)
Carbon tetrachloride	ug/m3	41	410		16	9.4	11	3.7	4.4	13	7.5	12	4.5	3.3	ND (0.25)	ND (0.25)	ND (1.3)	ND (0.25)	ND (1.3)	ND (0.25)	ND (0.25)	ND (1.3)	0.94 J	ND (1.3)
trans-1,2-Dichloroethylene	ug/m3	630	6,300		ND (0.13)	ND (0.13)	ND (0.79)	ND (0.13)	ND (0.79)	ND (0.13)	ND (0.13)	ND (0.79)	ND (0.13)	ND (0.79)	ND (0.13)	ND (0.13)	ND (0.79)	ND (0.13)	ND (0.79)	ND (0.13)	ND (0.13)	ND (0.79)	ND (0.13)	ND (0.79)
cis-1,2-Dichloroethylene	ug/m3	630	6,300	(d)	ND (0.15)	ND (0.15)	ND (0.79)	ND (0.15)	ND (0.79)	ND (0.15)	ND (0.15)	ND (0.79)	ND (0.15)	ND (0.79)	ND (0.15)	ND (0.15)	ND (0.79)	0.87	ND (0.79)	ND (0.15)	ND (0.15)	ND (0.79)	0.44 J	ND (0.79)
Hexachloroethane	ug/m3	61	610		ND (0.25)	ND (0.25)	ND (1.9)	ND (0.25)	ND (1.9)	ND (0.25)	ND (0.25)	ND (1.9)	ND (0.25)	ND (1.9)	ND (0.25)	ND (0.25)	ND (1.9)	ND (0.25)	ND (1.9)	ND (0.25)	ND (0.25)	ND (1.9)	ND (0.25)	ND (1.9)
Tetrachloroethylene	ug/m3	41	410		166	98.3	123	29	59	669	57	613	141	168	3.6	2.6	2.3	2.9	1.6	7.5	3.1	5.2	24	2.4
Trichloroethylene	ug/m3	100	1,000		1	0.22	ND (0.21)	ND (0.18)	ND (0.21)	ND (0.18)	ND (0.18)	ND (0.21)	ND (0.18)	ND (0.21)	ND (0.18)	ND (0.18)	ND (0.21)	0.86	ND (0.21)	ND (0.18)	ND (0.18)	ND (0.21)	ND (0.18)	ND (0.21)
TRACER	ACER																							
Isopropyl Alcohol	ppbv	NA	NA		27.1	9.5	5.3	11	7.4	3.8	2.8	3.2	5.6	24.7	2.7	4.3	3.9	2.1	0.96	17.5	31.4	33.9	24.1	17.8

Table 2 Summary of Soil Gas Results Collected in May and August 2011 Former Occidental Chemical Facility Montague, Michigan

Client Sample ID:			reening Levels		SGMP-08D-1	SGMP-08D-2	SGMP-08I	SGMP-08S	SGMP-09D	SGMP-09I	SGMP-09S
Lab Sample ID:			(b) al Exposure)		JA84264-17	JA84264-18	JA84264-16	JA84264-15	JA84264-21	JA84264-20	JA84264-19
Date Sampled:	UNITS	Shallow	Shallow Intermediate/		8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011	8/17/2011
Matrix:		5'	Deep 15' and 30'		Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas	Soil Gas
iviatrix.		(AF = 0.1)	(AF = 0.01)		Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.
							NEW S	SGMP EAST FL	_ANK		
GC/MS Volatiles (TO-15)											
Chloroform	ug/m3	11	110		ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)	ND (0.98)
Carbon tetrachloride	ug/m3	41	410		ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)
trans-1,2-Dichloroethylene	ug/m3	630	6,300		ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)
cis-1,2-Dichloroethylene	ug/m3	630	6,300	(d)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)
Hexachloroethane	ug/m3	61	610		ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)
Tetrachloroethylene	ug/m3	41	410		1.7	1.8	2.9	0.81	16	14	5.7
Trichloroethylene	ug/m3	100	1,000		ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)
TRACER											
Isopropyl Alcohol	ppbv	NA	NA		75.5	120	177	131	30.7	22.7	28.3

Notes:

AF - Attenuation Factor.

NA - Not applicable.

ND - Not detected above laboratory reporting limit (presented in parentheses).

RSL - Regional Screening Level. U.S. EPA Regional Screening Level Table (June, 2011).

U.S. EPA - United States Environmental Protection Agency.

Bold/shaded values are detected above the associated soil vapor screening level.

Yellow shading represents a shallow soil vapor sample.

Blue shading represents an intermediate soil vapor sample

Pink shading represents a deep soil vapor sample.

- (a) Soil gas screening levels protective of a site-specific indoor worker scenario are equal to the U.S. EPA RSLs derived based on site-specific exposure assumptions representative of an indoor worker at the Occidental Resort (based on a 1x10-5 target risk level and target hazard quotient of 1) divided by US.E PA's default attenuation factors ((0.1 for shallow soil gas less than or equal to 5 feet in depth and 0.01 for intermediate and deep soil gas greater than 5 feet in depth).
- (b) Soil gas screening levels protective of a residential scenario are equal to the US.E PA RSLs for residential air (based on a 1x10-5 target risk level and target hazard quotient of 1) divided by USEPA's default attenuation factors (0.1 for shallow soil gas less than or equal to 5 feet in depth and 0.01 for intermediate and deep soil gas greater than 5 feet in depth).
- (c) Soil gas collected from SGMP-4, 5, 6, 7, 8, and 9 are compared to soil gas screening levels protective of residential exposure because these soil gas points are located in or nearby a residential area. Soil gas collected from SGMP-1, 2, and 3 are compared to soil gas screening levels protective of a site-specific indoor worker exposure because these soil gas points are located in the vicinity of the on-site estate facilities where indoor workers are the most sensitive receptors.
- (d) Value for cis-1,2-dichloroethylene is not available. Therefore, the value for trans-1,2-dichloroethylene is used due to structural similarities.

Table 3 U.S. EPA Regional Screening Level Calculator Output - Site-Specific Resort Worker Exposure Scenario Former Occidental Chemical Facility Montague, Michigan

Compound	CAS#	Inhalation Unit Risk (ug/m³) ⁻¹	Chronic RfC (mg/m³)	_	Noncarcinogenic RSL HQ=1 (ug/m³)	Selected Indoor Air Screening Level (ug/m³)
Carbon Tetrachloride	56-23-5	6.00E-06	1.00E-01	8.52E+01	1.83E+03	8.52E+01
Chloroform	67-66-3	2.30E-05	9.77E-02	2.22E+01	1.78E+03	2.22E+01
Dichloroethylene, 1,2-cis-	156-59-2	-	-		-	1.10E+03 (a)
Dichloroethylene, 1,2-trans	156-60-5	-	6.00E-02		1.10E+03	1.10E+03
Hexachloroethane	67-72-1	4.00E-06	-	1.28E+02	-	1.28E+02
Tetrachloroethylene	127-18-4	5.90E-06	2.71E-01	8.66E+01	4.95E+03	8.66E+01
Trichloroethylene	79-01-6	2.00E-06	1.00E-02	2.56E+02	1.83E+02	1.83E+02

Site-specific Indoor Worker Equation Inputs for Ai

Variable	Value
THQ (target hazard quotient) unitless	1
ATw (averaging time)	365
EFw (exposure frequency) d/yr	20
EDw (exposure duration) years	25
LT (lifetime) yr	70
ETw (exposure time) hours	24

Notes:

CAS - Chemical Abstracts Service.

HQ - Hazard Quotient.

IUR - Inhalation unit risk.

RfC - Reference Concentration.

RSL - Regional Screening Level.

TR - Target Risk.

The above screening levels were calculated using U.S. EPA's Regional Screening Level (RSL) Calculator (http://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search) and the semi-site-specific inputs located above. Carcinogenic screening levels were adjusted for a target risk of 1x10-5. Output generated 20JUN2011:13:58:14.

(a) The value calculated for trans-1,2-dichloroethylene was used as a surrogate for cis-1,2-dichloroethylene.

Appendix A

Soil Boring & SGMP Construction Logs

SGMP-08 **A=COM**

Client: GSH, Inc. (Occidental)
Site: Montague, Michigan

Date: 8/4/2011

Weather: Upper 70's. Cloudu
Geologist: Barry J. Harding, CPG
Driller: Stearns Drilling, Dutton, MI

Tom & Gary

Rig: Direct-Push 6620 DT

Depth					MiniRae PID
(feet bgs)	SGMP-S	SGMP-I	SGMP-D	Lithological Description	(ppm)
1					
2	BENTONITE	BENTONITE	BENTONITE		
3					
4	SAND PACK				
5	\downarrow			(3-8') Loose, fine to medium SAND, poorly graded, trace	
6				roots and gravel, dry, reddish yellow 7/6 7.5YR	0.0
7		SAND			
8					
9	4				
10	Á	SAND PACK			
11	4				
12					
13			SAND		
14		ı		(40.40)). (2.00)	
15		<u> </u>		(13-18') Loose, fine SAND, poorly graded, trace organics,	0.0
16 17				with roots, dry, very pale brown 7/3 10YR	
18	-				
19 20					
	-				
21 22	1				
23	1				
24	1				
25	1		SAND PACK		
26	1		JAND I ACK		
27	1				
28	1				
29	1			(25-30') Loose, fine-medium SAND, poorly graded, trace	
30	1		\downarrow	roots, gravel, dry, reddish yellow 7/6 7.5 YR	0.0
31	1		•	group, graver, ary, readistryenow 7,0713 Tit	0.0
32	1				
J_					

 \downarrow

Soil Gas Monitoring Point

SGMP-09 **A=COM**

Client: GSH, Inc. (Occidental)
Site: Montague, Michigan

Date: 8/4/2011

Weather: Upper 70'. Cloudy.
Geologist: Barry J. Harding, CPG
Driller: Stearns Drilling, Dutton, MI

Tom & Gary

Rig: Direct-Push 6620 DT

2 BENTONITE BENTONITE 3 4 SAND PACK 5	Depth					MiniRae PID
2 BENTONITE BENTONITE 3 4 SAND PACK 5	(feet bgs)	SGMP-S	SGMP-I	SGMP-D	Lithological Description	(ppm)
3	1					
4	2	BENTONITE	BENTONITE	BENTONITE		
SAND Sand	3					
SAND (13-18') Loose, fine to medium SAND, well to moderate grading, trace crs sand, moist, pale brown 7/3 10YR SAND SAND (13-18') Loose, fine to medium SAND, well to moderate grading, trace crs sand, moist, pale brown 7/3 10YR SAND SAND (13-18') Loose, fine to medium SAND, well to moderate grading, trace crs sand, moist, pale brown 7/3 10YR SAND SAND (25-30') Loose, fine SAND, poorly graded, dry, very pale brown 7/3 10YR (25-30') Loose, fine SAND, poorly graded, dry, very pale brown 7/3 10YR 0.0	4					
SAND Sand	5	\				0.0
8 9 10 10 11 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 SAND PACK SAND (13-18') Loose, fine to medium SAND, well to moderate grading, trace crs sand, moist, pale brown 7/3 10YR SAND PACK (25-30') Loose, fine SAND, poorly graded, dry, very pale brown 7/3 10YR 0.0	6	1			trace gravel, dry, reddish yellow 7/6 7.5YR.	
9 10 11 12 13 14 15 14 15 16 17 17 18 19 19 19 19 19 19 19	7	1	SAND			
SAND PACK 11	8	_				
11	9	_				
SAND		4	SAND PACK			
SAND		4				
14		1				
15		1		SAND		
16		4			(40.40)	
17 18 19 20 21 22 23 24 25 26 27 28 29 30 30 31	15	4	<u> </u>			0.0
18	16	-			grading, trace crs sand, moist, pale brown 7/3 104R	
19		4				
20 21 22 23 24 25 26 27 28 29 30 30 31 (25-30') Loose, fine SAND, poorly graded, dry, very pale brown 7/3 10YR 0.0		4				
21		4				
22		4				
23 24 25 25 26 27 28 29 30 31	22	-				
24		1				
25	23	1				
26 27 28 29 30 31 (25-30') Loose, fine SAND, poorly graded, dry, very pale brown 7/3 10YR 0.0		1		SAND DACK		
27 28 29 30 31 (25-30') Loose, fine SAND, poorly graded, dry, very pale brown 7/3 10YR 0.0	26	1		JAND FACK		
28 29 30 ↓	27	1				
29 (25-30') Loose, fine SAND, poorly graded, dry, very pale brown 7/3 10YR 0.0		†				
30	29	†			(25-30') Loose, fine SAND, poorly graded, dry, very pale	
31		†		\downarrow		0.0
	31	1		•	J. 10.11.	0.0
	32	1				

 \downarrow

Soil Gas Monitoring Point

Appendix B

Laboratory Analytical Report

09/01/11

Technical Report for

Conestoga-Rovers & Associates

Montague, Montague, MI

SSOW# 261-402-D02-3100 PROJ# 9970

Accutest Job Number: JA84264

Sampling Dates: 08/15/11 - 08/17/11

Report to:

Conestoga-Rovers & Associates 2055 Niagara Falls Blvd. Niagara Falls, NY 14304 pmcmahon@craworld.com

ATTN: Paul McMahon

Total number of pages in report: 64

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

David N. Speis[∜] VP, Laboratory Director

Client Service contact: Matt Cordova 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

.

C

-1-

Table of Contents

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	5
Section 3: Sample Results	6
3.1: JA84264-1: SGMP-01S	7
3.2: JA84264-2: SGMP-01I	8
3.3: JA84264-3: SGMP-02S	9
3.4: JA84264-4: SGMP-02I	10
3.5: JA84264-5: SGMP-03S	11
3.6: JA84264-6: SGMP-03I	12
3.7: JA84264-7: SGMP-04S	13
3.8: JA84264-8: SGMP-04I	14
3.9: JA84264-9: SGMP-05S	15
3.10: JA84264-10: SGMP-05I	16
3.11: JA84264-11: SGMP-06S	17
3.12: JA84264-12: SGMP-06I	
3.13: JA84264-13: SGMP-07S	19
3.14: JA84264-14: SGMP-07I	
3.15: JA84264-15: SGMP-08S	
3.16: JA84264-16: SGMP-08I	
3.17: JA84264-17: SGMP-08D-1	23
3.18: JA84264-18: SGMP-08D-2	24
3.19: JA84264-19: SGMP-09S	25
3.20: JA84264-20: SGMP-09I	
3.21: JA84264-21: SGMP-09D	27
Section 4: Misc. Forms	28
4.1: Chain of Custody	29
4.2: Summa Canister and Flow Controller Log	
4.3: Sample Tracking Chronicle	36
Section 5: GC/MS Volatiles - QC Data Summaries	
5.1: Method Blank Summary	
5.2: Blank Spike/Blank Spike Duplicate Summary	48
5.3: Duplicate Summary	55
5.4: Summa Cleaning Certification	
5.5: Surrogate Recovery Summaries	63

Sample Summary

Job No:

JA84264

Conestoga-Rovers & Associates

Montague, Montague, MI Project No: SSOW# 261-402-D02-3100 PROJ# 9970

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
JA84264-1	08/15/11	16:38 MP	08/20/11	AIR	Soil Vapor Comp.	SGMP-01S
JA84264-2	08/15/11	17:00 MP	08/20/11	AIR	Soil Vapor Comp.	SGMP-01I
JA84264-3	08/16/11	09:40 MP	08/20/11	AIR	Soil Vapor Comp.	SGMP-02S
JA84264-4	08/16/11	09:55 MP	08/20/11	AIR	Soil Vapor Comp.	SGMP-02I
JA84264-5	08/16/11	11:13 MP	08/20/11	AIR	Soil Vapor Comp.	SGMP-03S
JA84264-6	08/16/11	11:25 MP	08/20/11	AIR	Soil Vapor Comp.	SGMP-03I
JA84264-7	08/16/11	13:46 MP	08/20/11	AIR	Soil Vapor Comp.	SGMP-04S
JA84264-8	08/16/11	14:02 MP	08/20/11	AIR	Soil Vapor Comp.	SGMP-04I
JA84264-9	08/16/11	15:15 MP	08/20/11	AIR	Soil Vapor Comp.	SGMP-05S
JA84264-10	08/16/11	15:31 MP	08/20/11	AIR	Soil Vapor Comp.	SGMP-05I
JA84264-11	08/16/11	16:44 MP	08/20/11	AIR	Soil Vapor Comp.	SGMP-06S
JA84264-12	08/16/11	17:00 MP	08/20/11	AIR	Soil Vapor Comp.	SGMP-06I
JA84264-13	08/17/11	10:00 MP	08/20/11	AIR	Soil Vapor Comp.	SGMP-07S

Sample Summary (continued)

Job No:

JA84264

Conestoga-Rovers & Associates

Montague, Montague, MI Project No: SSOW# 261-402-D02-3100 PROJ# 9970

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
JA84264-14	08/17/11	10:16 MP	08/20/11	AIR	Soil Vapor Comp.	SGMP-07I
JA84264-15	08/17/11	12:13 MP	08/20/11	AIR	Soil Vapor Comp.	SGMP-08S
JA84264-16	08/17/11	12:30 MP	08/20/11	AIR	Soil Vapor Comp.	SGMP-08I
JA84264-17	08/17/11	12:45 MP	08/20/11	AIR	Soil Vapor Comp.	SGMP-08D-1
JA84264-18	08/17/11	12:45 MP	08/20/11	AIR	Soil Vapor Comp.	SGMP-08D-2
JA84264-19	08/17/11	16:38 MP	08/20/11	AIR	Soil Vapor Comp.	SGMP-09S
JA84264-20	08/17/11	16:54 MP	08/20/11	AIR	Soil Vapor Comp.	SGMP-09I
JA84264-21	08/17/11	17:10 MP	08/20/11	AIR	Soil Vapor Comp.	SGMP-09D

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Conestoga-Rovers & Associates Job No JA84264

Site: Montague, Montague, MI Report Date 9/1/2011 4:16:22 PM

On 08/20/2011, 21 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories. Samples were intact and properly preserved, unless noted below. An Accutest Job Number of JA84264 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method TO-15

Matrix: AIR Batch ID: V2W1362

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JA84264-5DUP were used as the QC samples indicated.
- Blank Spike Recovery(s) for Hexachloroethane are outside control limits.
- RPD(s) for Duplicate for Isopropyl Alcohol, Trichloroethylene are outside control limits for sample JA84264-5DUP. Outside control limits.

Matrix: AIR Batch ID: V2W1363

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JA84314-3DUP were used as the QC samples indicated.
- Sample(s) JA84264-15, JA84264-16, JA84264-17, JA84264-18 have compounds reported with "E" qualifiers indicating estimated value exceeding calibration range.
- Blank Spike Recovery(s) for Hexachloroethane are outside control limits.

Matrix: AIR Batch ID: V3W935

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JA84264-1DUP were used as the QC samples indicated.
- Blank Spike Recovery(s) for Hexachloroethane are outside control limits.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

S	ample Results	
	port of Analysis	

Report of Analysis

Client Sample ID: SGMP-01S

Lab Sample ID:JA84264-1Date Sampled:08/15/11Matrix:AIR - Soil Vapor Comp.Summa ID:A664Date Received:08/20/11Method:TO-15Percent Solids:n/a

Project: Montague, Montague, MI

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	3W23663.D	1	08/23/11	YXC	n/a	n/a	V3W935
Run #2	3W23665.D	1	08/23/11	YXC	n/a	n/a	V3W935

	Initial Volume	
Run #1	400 ml	
Run #2	40.0 ml	

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	119.4	Chloroform	0.88	0.20	0.028	ppbv	4.3	0.98	ug/m3
	,					* *			U
56-23-5	153.8	Carbon tetrachloride	121 ^a	2.0	0.40	ppbv	761 ^a	13	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	234	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	60.1	Isopropyl Alcohol	0.25	0.20	0.059	ppbv	0.61	0.49	ug/m3
127-18-4	165.8	Tetrachloroethylene	365 a	0.40	0.28	ppbv	2480 a	2.7	ug/m3
79-01-6	131.4	Trichloroethylene	0.27	0.040	0.033	ppbv	1.5	0.21	ug/m3

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
460-00-4	4-Bromofluorobenzene	90%	87%	65-128%

(a) Result is from Run# 2

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Report of Analysis

Page 1 of 1

Client Sample ID: SGMP-01I

Lab Sample ID:JA84264-2Date Sampled:08/15/11Matrix:AIR - Soil Vapor Comp.Summa ID: A824DAf48Received:08/20/11Method:TO-15Percent Solids:n/a

Project: Montague, Montague, MI

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	3W23666.D	1	08/23/11	YXC	n/a	n/a	V3W935
Run #2	2W32345.D	30.6	08/25/11	YMH	n/a	n/a	V2W1362

	Initial Volume
Run #1	400 ml
Run #2	200 ml

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	119.4	Chloroform	0.33	0.20	0.028	ppbv	1.6	0.98	ug/m3
56-23-5	153.8	Carbon tetrachloride	334 ^a	12	2.4	ppbv	2100 a	75	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	234	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	60.1	Isopropyl Alcohol	0.55	0.20	0.059	ppbv	1.4	0.49	ug/m3
127-18-4	165.8	Tetrachloroethylene	1030 a	2.4	1.7	ppbv	6980 a	16	ug/m3
79-01-6	131.4	Trichloroethylene	0.43	0.040	0.033	ppbv	2.3	0.21	ug/m3

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
460-00-4	4-Bromofluorobenzene	88%	75%	65-128%

(a) Result is from Run# 2

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

L

Page 1 of 1

Client Sample ID: SGMP-02S

Lab Sample ID:JA84264-3Date Sampled:08/16/11Matrix:AIR - Soil Vapor Comp.Summa ID: A772Date Received:08/20/11Method:TO-15Percent Solids:n/a

Project: Montague, Montague, MI

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	3W23668.D	1	08/24/11	YXC	n/a	n/a	V3W935
Run #2	3W23669.D	1	08/24/11	YXC	n/a	n/a	V3W935

	Initial Volume
Run #1	400 ml
Run #2	40.0 ml

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	119.4	Chloroform	1.0	0.20	0.028	ppbv	4.9	0.98	ug/m3
56-23-5	153.8	Carbon tetrachloride	19.2	0.20	0.040	ppbv	121	1.3	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	234	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	60.1	Isopropyl Alcohol	6.8	0.20	0.059	ppbv	17	0.49	ug/m3
127-18-4	165.8	Tetrachloroethylene	265 a	0.40	0.28	ppbv	1800 a	2.7	ug/m3
79-01-6	131.4	Trichloroethylene	0.13	0.040	0.033	ppbv	0.70	0.21	ug/m3

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
460-00-4	4-Bromofluorobenzene	85%	86%	65-128%

(a) Result is from Run# 2

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: SGMP-02I

Lab Sample ID:JA84264-4Date Sampled:08/16/11Matrix:AIR - Soil Vapor Comp.Summa ID: A304DateReceived:08/20/11Method:TO-15Percent Solids:n/a

Project: Montague, Montague, MI

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	3W23670.D	1	08/24/11	YXC	n/a	n/a	V3W935
Run #2	2W32346.D	26.6	08/25/11	YMH	n/a	n/a	V2W1362

	Initial Volume
Run #1	400 ml
n #2	200 ml

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	119.4	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	153.8	Carbon tetrachloride	79.8 ^a	11	2.1	ppbv	502 a	69	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	234	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	60.1	Isopropyl Alcohol	10.9	0.20	0.059	ppbv	26.8	0.49	ug/m3
127-18-4	165.8	Tetrachloroethylene	730 a	2.1	1.5	ppbv	4950 a	14	ug/m3
79-01-6	131.4	Trichloroethylene	0.15	0.040	0.033	ppbv	0.81	0.21	ug/m3

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
460-00-4	4-Bromofluorobenzene	87%	73%	65-128%

(a) Result is from Run# 2

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

W

ပ်

Report of Analysis

Page 1 of 1

Client Sample ID: SGMP-03S

Lab Sample ID:JA84264-5Date Sampled:08/16/11Matrix:AIR - Soil Vapor Comp.Summa ID: A27 Date Received:08/20/11Method:TO-15Percent Solids:n/a

Project: Montague, Montague, MI

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 2W32347.D 1 08/25/11 YMH n/a n/a V2W1362

Run #2

Initial Volume

Run #1 400 ml

Run #2

460-00-4

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	119.4	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	153.8	Carbon tetrachloride	0.23	0.20	0.040	ppbv	1.4	1.3	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	234	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	60.1	Isopropyl Alcohol	12.2	0.20	0.059	ppbv	30.0	0.49	ug/m3
127-18-4	165.8	Tetrachloroethylene	13.5	0.040	0.028	ppbv	91.5	0.27	ug/m3
79-01-6	131.4	Trichloroethylene	0.27	0.040	0.033	ppbv	1.5	0.21	ug/m3

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

81%

4-Bromofluorobenzene

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

65-128%

Page 1 of 1

Client Sample ID: SGMP-03I

Lab Sample ID:JA84264-6Date Sampled:08/16/11Matrix:AIR - Soil Vapor Comp.Summa ID: A74**Date Received:**08/20/11Method:TO-15Percent Solids:n/a

Project: Montague, Montague, MI

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 3W23672.D 1 08/24/11 YXC n/a n/a V3W935

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	119.4	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	153.8	Carbon tetrachloride	0.44	0.20	0.040	ppbv	2.8	1.3	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	234	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	60.1	Isopropyl Alcohol	7.2	0.20	0.059	ppbv	18	0.49	ug/m3
127-18-4	165.8	Tetrachloroethylene	15.1	0.040	0.028	ppbv	102	0.27	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
460-00-4	4-Bromofluorobenzene	91%		65-128%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

alysis Page 1 of 1

Client Sample ID: SGMP-04S

Lab Sample ID:JA84264-7Date Sampled:08/16/11Matrix:AIR - Soil Vapor Comp.Summa ID: A822Date Received:08/20/11Method:TO-15Percent Solids:n/a

Project: Montague, Montague, MI

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 3W23673.D 1 08/24/11 YXC n/a n/a V3W935

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	119.4	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	153.8	Carbon tetrachloride	0.70	0.20	0.040	ppbv	4.4	1.3	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	234	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	60.1	Isopropyl Alcohol	7.4	0.20	0.059	ppbv	18	0.49	ug/m3
127-18-4	165.8	Tetrachloroethylene	8.7	0.040	0.028	ppbv	59	0.27	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits
460-00-4 4-Bromofluorobenzene 90% 65-128%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

W

Page 1 of 1

Report of Analysis

Client Sample ID: SGMP-04I

Lab Sample ID:JA84264-8Date Sampled:08/16/11Matrix:AIR - Soil Vapor Comp.Summa ID: A67 Date Received:08/20/11Method:TO-15Percent Solids:n/a

Project: Montague, Montague, MI

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 3W23674.D 1 08/24/11 YXC n/a n/a V3W935

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	119.4	Chloroform	0.29	0.20	0.028	ppbv	1.4	0.98	ug/m3
56-23-5	153.8	Carbon tetrachloride	1.7	0.20	0.040	ppbv	11	1.3	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	234	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	60.1	Isopropyl Alcohol	5.3	0.20	0.059	ppbv	13	0.49	ug/m3
127-18-4	165.8	Tetrachloroethylene	18.1	0.040	0.028	ppbv	123	0.27	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits

460-00-4 4-Bromofluorobenzene 91% 65-128%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: SGMP-05S

Lab Sample ID:JA84264-9Date Sampled:08/16/11Matrix:AIR - Soil Vapor Comp.Summa ID:A10 Date Received:08/20/11Method:TO-15Percent Solids:n/a

Project: Montague, Montague, MI

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 3W23675.D 1 08/24/11 YXC n/a n/a V3W935

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	119.4	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	153.8	Carbon tetrachloride	0.52	0.20	0.040	ppbv	3.3	1.3	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	234	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	60.1	Isopropyl Alcohol	24.7	0.20	0.059	ppbv	60.7	0.49	ug/m3
127-18-4	165.8	Tetrachloroethylene	24.8	0.040	0.028	ppbv	168	0.27	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
460-00-4	4-Bromofluorobenzene	89%		65-128%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: SGMP-05I

Lab Sample ID:JA84264-10Date Sampled:08/16/11Matrix:AIR - Soil Vapor Comp.Summa ID: A820Date Received:08/20/11Method:TO-15Percent Solids:n/a

Project: Montague, Montague, MI

DF File ID Analyzed By **Prep Date Prep Batch Analytical Batch** Run #1 2W32348.D 08/25/11 YMH n/a V2W1362 1 n/a Run #2 2W32367.D 1 08/25/11 YMH n/a n/a V2W1363

	Initial Volume
Run #1	400 ml
Run #2	100 ml

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	119.4	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	153.8	Carbon tetrachloride	1.9	0.20	0.040	ppbv	12	1.3	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	234	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	60.1	Isopropyl Alcohol	3.2	0.20	0.059	ppbv	7.9	0.49	ug/m3
127-18-4	165.8	Tetrachloroethylene	90.4 a	0.16	0.11	ppbv	613 a	1.1	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
460-00-4	4-Bromofluorobenzene	78%	75%	65-128%

(a) Result is from Run# 2

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: SGMP-06S

Lab Sample ID:JA84264-11Date Sampled:08/16/11Matrix:AIR - Soil Vapor Comp.Summa ID: A278Date Received:08/20/11Method:TO-15Percent Solids:n/a

Project: Montague, Montague, MI

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 2W32349.D 1 08/25/11 YMH n/a n/a V2W1362

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	119.4	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.20	0.040	ppbv	ND	1.3	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	234	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	60.1	Isopropyl Alcohol	0.96	0.20	0.059	ppbv	2.4	0.49	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.23	0.040	0.028	ppbv	1.6	0.27	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene 79% 65-128%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: SGMP-06I

Lab Sample ID:JA84264-12Date Sampled:08/16/11Matrix:AIR - Soil Vapor Comp.Summa ID: A218Date Received:08/20/11Method:TO-15Percent Solids:n/a

Project: Montague, Montague, MI

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 2W32350.D 1 08/25/11 YMH n/a n/a V2W1362

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	119.4	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.20	0.040	ppbv	ND	1.3	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	234	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	60.1	Isopropyl Alcohol	3.9	0.20	0.059	ppbv	9.6	0.49	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.34	0.040	0.028	ppbv	2.3	0.27	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene 86% 65-128%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

 $N = \ Indicates \ presumptive \ evidence \ of \ a \ compound$

Page 1 of 1

Client Sample ID: SGMP-07S

Lab Sample ID:JA84264-13Date Sampled:08/17/11Matrix:AIR - Soil Vapor Comp.Summa ID: A828Date Received:08/20/11Method:TO-15Percent Solids:n/a

Project: Montague, Montague, MI

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 2W32368.D 1 08/25/11 YMH n/a n/a V2W1363

Run #2

Initial Volume

Run #1 400 ml

Run #2

460-00-4

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	119.4	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.20	0.040	ppbv	ND	1.3	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	234	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	60.1	Isopropyl Alcohol	17.8	0.20	0.059	ppbv	43.8	0.49	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.36	0.040	0.028	ppbv	2.4	0.27	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits

73%

4-Bromofluorobenzene

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

65-128%

Page 1 of 1

Client Sample ID: SGMP-07I

Lab Sample ID:JA84264-14Date Sampled:08/17/11Matrix:AIR - Soil Vapor Comp.Summa ID: A63@Date Received:08/20/11Method:TO-15Percent Solids:n/a

Project: Montague, Montague, MI

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 2W32369.D 1 08/25/11 YMH n/a n/a V2W1363

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	119.4	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.20	0.040	ppbv	ND	1.3	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	234	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	60.1	Isopropyl Alcohol	33.9	0.20	0.059	ppbv	83.3	0.49	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.77	0.040	0.028	ppbv	5.2	0.27	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
460-00-4	4-Bromofluorobenzene	79%		65-128%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: SGMP-08S

Lab Sample ID: JA84264-15 **Date Sampled:** 08/17/11 Matrix: AIR - Soil Vapor Comp. Summa ID: A84(Date Received: 08/20/11 Method: Percent Solids: n/a TO-15

Project: Montague, Montague, MI

DF **Analytical Batch** File ID Analyzed By **Prep Date Prep Batch** Run #1 2W32370.D 1 08/25/11 YMH n/a V2W1363 n/a

Run #2

Initial Volume

Run #1 400 ml

Run #2

460-00-4

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	119.4	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.20	0.040	ppbv	ND	1.3	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	234	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	60.1	Isopropyl Alcohol	131	0.20	0.059	ppbv E	322	0.49	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.12	0.040	0.028	ppbv	0.81	0.27	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits

78%

4-Bromofluorobenzene

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

65-128%

Page 1 of 1

Client Sample ID: SGMP-08I

Lab Sample ID: JA84264-16 **Date Sampled:** 08/17/11 Matrix: AIR - Soil Vapor Comp. Summa ID: A472Date Received: 08/20/11 Method: Percent Solids: n/a TO-15

Project: Montague, Montague, MI

DF **Analytical Batch** File ID Analyzed By **Prep Date Prep Batch** Run #1 2W32371.D 1 08/26/11 YMH n/a V2W1363 n/a

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	119.4	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.20	0.040	ppbv	ND	1.3	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	234	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	60.1	Isopropyl Alcohol	177	0.20	0.059	ppbv E	435	0.49	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.43	0.040	0.028	ppbv	2.9	0.27	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
0120 1101	S411 08410 11000 (0110)	21422 2		

460-00-4 4-Bromofluorobenzene 89% 65-128%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: SGMP-08D-1

Lab Sample ID:JA84264-17Date Sampled:08/17/11Matrix:AIR - Soil Vapor Comp.Summa ID: A857Date Received:08/20/11Method:TO-15Percent Solids:n/a

Project: Montague, Montague, MI

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 2W32372.D 1 08/26/11 YMH n/a n/a V2W1363

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	119.4	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.20	0.040	ppbv	ND	1.3	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	234	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	60.1	Isopropyl Alcohol	75.5	0.20	0.059	ppbv E	186	0.49	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.25	0.040	0.028	ppbv	1.7	0.27	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
460-00-4	4-Bromofluorobenzene	84%		65-128%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: SGMP-08D-2

Lab Sample ID:JA84264-18Date Sampled:08/17/11Matrix:AIR - Soil Vapor Comp.Summa ID: A653Date Received:08/20/11Method:TO-15Percent Solids:n/a

Project: Montague, Montague, MI

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 2W32373.D 1 08/26/11 YMH n/a n/a V2W1363

Run #2

Initial Volume

Run #1 400 ml

Run #2

460-00-4

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	119.4	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.20	0.040	ppbv	ND	1.3	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	234	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	60.1	Isopropyl Alcohol	120	0.20	0.059	ppbv E	295	0.49	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.26	0.040	0.028	ppbv	1.8	0.27	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits

80%

4-Bromofluorobenzene

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

65-128%

Page 1 of 1

Client Sample ID: SGMP-09S

Lab Sample ID:JA84264-19Date Sampled:08/17/11Matrix:AIR - Soil Vapor Comp.Summa ID: A302Date Received:08/20/11Method:TO-15Percent Solids:n/a

Project: Montague, Montague, MI

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 2W32374.D 1 08/26/11 YMH n/a n/a V2W1363

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	119.4	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.20	0.040	ppbv	ND	1.3	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	234	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	60.1	Isopropyl Alcohol	28.3	0.20	0.059	ppbv	69.6	0.49	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.84	0.040	0.028	ppbv	5.7	0.27	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
460-00-4	4-Bromofluorobenzene	89%		65-128%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: SGMP-09I

Lab Sample ID:JA84264-20Date Sampled:08/17/11Matrix:AIR - Soil Vapor Comp.Summa ID: A01 Date Received:08/20/11Method:TO-15Percent Solids:n/a

Project: Montague, Montague, MI

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 2W32375.D 1 08/26/11 YMH n/a n/a V2W1363

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	119.4	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.20	0.040	ppbv	ND	1.3	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	234	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	60.1	Isopropyl Alcohol	22.7	0.20	0.059	ppbv	55.8	0.49	ug/m3
127-18-4	165.8	Tetrachloroethylene	2.1	0.040	0.028	ppbv	14	0.27	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
0120 1101	S411 08410 11000 (0110)	21422 2		

460-00-4 4-Bromofluorobenzene 87% 65-128%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

c

Page 1 of 1

Client Sample ID: SGMP-09D

Lab Sample ID:JA84264-21Date Sampled:08/17/11Matrix:AIR - Soil Vapor Comp.Summa ID: A36@Date Received:08/20/11Method:TO-15Percent Solids:n/a

Project: Montague, Montague, MI

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 2W32376.D 1 08/26/11 YMH n/a n/a V2W1363

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA Special List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	119.4	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.20	0.040	ppbv	ND	1.3	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	234	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	60.1	Isopropyl Alcohol	30.7	0.20	0.059	ppbv	75.5	0.49	ug/m3
127-18-4	165.8	Tetrachloroethylene	2.3	0.040	0.028	ppbv	16	0.27	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
C110110.	Buildgate Recoveries	Itum/ I	Italiii 2	

460-00-4 4-Bromofluorobenzene 87% 65-128%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ر

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Chain of Custody
- Summa Canister and Flow Controller Log
- Sample Tracking Chronicle

CHAIN OF CUSTODY Air Sampling Field Data Sheet

2235 US Highway 130, Dayton, NJ 08810 Tel: 732.329.0200 Fax: 732.329.3499

			_
FED-EX Tracking #	Bottle Order Control #	PAGE /	ne 2
49537699 8442	MC - ////201/ - 9	I AUL 1	01.0
Lab Quote #	Lab Job#		
	7/0.19.11		

Chell Reporting innormation Chel			Tel:	732.329.0200	Fax: 732.329	.3499								JA84	2047	AΙ			
AFCOM STORY STATE OF THE COMMAND AND STATE OF	Company Nome		Client / Re										Wea	ther Paramete	ers ##		Rec	uested A	inalysis
Second Rapids Mile May SE Suit 200 State May Second May	Company Name	AFCOM		İ	Project Name	SH	\mathcal{M}	anto	-40			rature (F	ahrenheit)	Maliforni] [
Contact Regards Mar 1495/2 Marting Ce Marting						-,,		000 14	goe	$\overline{}$	SIAIT.			Maximu	ım:			ĺ	
Project Act	5555 (Glenwood Hills P	Kur, SES	vite200	7601	old	Cha	nne.[Tra	,/ I	Stop:	\rightarrow		Minimu	m: —				
Project Act	City	State	/Z/p	,	City 1	1			State	Ť.									1 1
Project Act	Grand	i Kapias MI	475/	g	100	1ago	76		MI			hpheric l	Pressure (in				1 1		
Proper P				_	Project #	Mai	157	82			Start:			Maximu	ım:				
Comment Comm	Phone # Client Purchase Order # Steel																		
Lab Sample # Field 10 Power of Collection Start Sample Equipment into Start Sample Internation I	616-9	140-4265									Otop.			William	1111		154	- [
Interest Consideration C	Sampler(s) Name(s	Michael J	Pago								Other v	veather o	comment:				17	_	
Lab Sample Field Different of Collection Collecti		1 (1C)/VEC 5,		Sampling Equi	pment Info	11	Start :	Sampling Info	rmation		8		Ston S	ampling lefor	mation		lòl'	Y	
Lab Sample Field D Print of Collection Solving (St) Send Size Controlled Collect			17				I				Ú							- C	
1 SGMP-015 SV R66H 6U FCC63 8 / 15 ISS8 28 8.5 MSI 5 ISS8 5 SV MSI V MSI	Lah Sample #	Field ID / Point of Collection	Soil Vap (SV)	Senial# Si	ize Controller	Date	(24 hr	Pressure	Temp			Date		Canister Pressure			★	17	
Tool Sold Fold Sold	can oampie #					0/10				1			clock)	("Hg)	(F)	1-0	· ,		
3 SGMP-02S A72 -FCS2 8/16 0857 2 9 666 8/16 0940 5 70.7 XX XX SGMP-02T A304 -FC160 0913 3 0 63.0 0955 7 72 XX SGMP-03S A279 -FC65 1028 2-9 74.7 1/113 2 76.1 XX SGMP-03T A745 -FC60 1044 3 0 75.2 1/125 6 77.2 XX SGMP-03T A745 -FC60 1044 3 0 75.2 1/125 6 77.2 XX SGMP-04S A822 -FC485 1306 70 59.1 1346 7 85.6 XX SGMP-04T A671 -FC166 1322 2.99.5 88.5 1/402 4.5 85.8 XX SGMP-05S A1012 7 FC262 1/435 30 81.1 1515 6 76.3 XX SGMP-05S A1012 7 FC262 1/435 30 81.1 1515 6 76.3 XX SGMP-05T 1/480 -FC80 1/491 10 10 10 10 10 10 10 10 10 10 10 10 10	- !		18/	H007 6	11 0007	0/15	12.2			NV_{r}	01	?>		<u> </u>		ΜŅ	X.	X,L	\perp
SGMP-O3T				14026	- FC106	W			85,1		N		1700	_ 5	80,8	_ 1	\mathbb{Z}^{n}		
SGMP-O3T	, 3	_SGMP-02S		A772	- FC522	8/16	0857	129	666	1	8	16	0940	5	70,7		$ \mathbf{Y} $	X	
SGMP-03S	. 4	SGMP-OZI		A304	- PC160	1	_	30	68.0	1			0955				Ŷ	7	\Box
SGMP-03I	-5	SGMP-03S		A279	FC/85		1028	29	74,7				1113	2			X	≯ T	
- 7	- 6	SGMP-03I		A745			1044	30		7 1			1125	6		\neg	K	\prec	+
SGMP-05S A1012 1 FC162 143S 30 81.1 151S 6 78.3 1 XX -10 SGMP-05T Turnaround Time (Buyes Days) Standard -15 Days 10 Day 5 Day 10 Day 10 Date 11 Day 10 Date 11 Day 10 Date 12 Date 13 Date 14 Date 15 Sample Custody must be documented below each time samples change possession, including courier delivery. Date Time 15 Sample Custody must be documented below each time samples change possession, including courier delivery. Reinquished by 16 Date Time 15 Sample Custody must be documented below each time samples change possession, including courier delivery. Reinquished by 16 Date Time 16 Received by 17 Date Time 17 Date Time 18 Received by 18 Date Time	- 7	SGMP-04S		A822 1	· F(485		13/6	30	<i>'</i>				1246		/ ''	\top	K) K	\rightarrow	+
Approved By: Date	- 8	SGMP-04T			_ / ` ` / "		1700					\vdash	1402			-	⇅⇃	\rightarrow	+
Turnaround Time (Business Days) Standard - 15 Days 10 Day Approved By: Date: Date: Date: Date: Date: Redinquished by: Received by: Date Time: Received by: Secured by: Received by: Received by: Date Time: Received by: Date Time: Received by: Received by: Date Time: Received by: Received by: Date Time: Date Time: Received by: Date Time: Received by: Date Time: Date Time: Received by: Date Time: Date	- ÿ	SGMP-05S			1 FC262					1		1	15/5	6		1,	())	+
Standard - 15 Days Standard - 15 Days Approved By: Date: Date	- 10		1/	4820 V	1-8C280	\mathbf{A}	1451	28			1	1/	521	5		1/	☆ f	$\mathbf{\hat{y}}$	+
Standard - 15 Days 10 Day Approved By: Approved By: Date: Date: Date: Date: Date: Date: Redinquished by: Received by: Received by: Date: Date: Received by: Date: Date: Received by: Date: Date: Received by: Date: Date: Date: Received by: Date: Date: Date: Received by: Date: H. GHUM		and the same				Data I	Deliverable Info	. 0, .					Comments	/Romarks	123000000	$\sim \nu$		161601037	
3 Day 3 Day 2 Date: Da	Standard -	- 15 Days (X)				All N	LIDER TO 15	is mandatory	Full 11		ж	Cal	bon	tetra	cklas	1	147.97.00007002000	MD04235225	040 (40)
3 Day 3 Day 2 Date: Da	1	10 Day				Ħ		is mandatory	¬			ch	lores	Com	1	100	/	-	
2 Usy 1 Day 1 Day Other		5 Day	Approved By:						-			CA	5-12	- 00	<u></u>		_		\mathcal{A}
2 Usy 1 Day 1 Day Other		3 Day				8			-			troi	575	2-00	E	/ (Son	nic	, ['
Other: Other: Hexachloroethane Comparison of the sample custody must be documented below each time samples change possession, including courier delivery. Comparison of the samples change possession, including courier delivery. Comparison of the samples change possession, including courier delivery. Comparison of the samples change possession, including courier delivery. Comparison of the samples change possession, including courier delivery. Comparison of the samples change possession, including courier delivery. Comparison of the samples change possession, including courier delivery. Comparison of the samples change possession, including courier delivery. Comparison of the samples change possession, including courier delivery. Comparison of the samples change possession, including courier delivery. Comparison of the samples change possession, including courier delivery. Comparison of the samples change possession, including courier delivery. Comparison of the samples change possession, including courier delivery. Comparison of the samples change possession, including courier delivery. Comparison of the samples change possession, including courier delivery. Comparison of the samples change possession, including courier delivery. Comparison of the samples change possession, including courier delivery. Comparison of the samples change possession, including courier delivery. Comparison of the samples change possession, including courier delivery. Comparison of the samples change possession, including courier delivery. Comparison of the samples change possession, including courier delivery. Comparison of the samples change possession, including courier delivery. Comparison of the samples change possession, including courier delivery. Comparison of the samples change possession, including courier delivery. Comparison of the samples change possession of the sampl		2 Day	Date:				<u> </u>	- 11	-			PC	É	<i>y</i> . <i>y</i> -	_	(1		,	_/
Cutter Country Custody must be documented below each time samples change possession, including courier delivery. Custody must be documented below each time samples change possession, including courier delivery. Custody fine Custody fin		1 Day				8			٠	1		Ť	7=						_
Sample Custody must be documented below each time aamples change possession, including courier delivery. Redirectory						1	" L					He	xa cl	loroe	than	٩			
Reinquished by: Date Time: Received by: Date Time: Received by:	ACCOMMODE:	Consideration of the Considera		a Sample Custody r	must be documented	below each	time samples	change poss	ession, including	courier de	livery.							MM MARKET	485334
Reinquished by: Date Time: Received by: Date Time: Received by:	Relinquished by Labor	grory: Marian	Date Tiffie: Rec	eived by:	_				15.			Da	le Tinte:	Received b	y. 11	1/.d		or a subsect of 4-90	ER, CARPILLA
3 McCarlor (May S/1) / 130 4 Reimquished by: Custody Seal H 5	Relinguished (and and			-×		2 Relinquist	J e	4 EX							y	<u> </u>		—
5 5	3 9/ Cefle	w///on 8/1/	11/178	<u>う</u>			4					J.a	W IIIIS.	4	7-				- 1
	Relinquished by:	1	Date Time: Rec	erved by:										1.7					
	5		1 5				40												_d

JA84264: Chain of Custody Page 1 of 5

CHAIN OF CUSTODY Air Sampling Field Data Sheet

Air Sampling Field Data Sheet 2235 US Highway 130, Dayton, NJ 08810

<u></u>		
FED-EX Tracking #	Bottle Order Control #	PAGE OF
Lab Quote #	Lab Job # TA84764	7

67 Come (BERTOT) To report to the common of the common of the	1et: /32.329.0200 Fax: /32.329.	.3499	Jrottog
	Client / Reporting Information		Weather Parameters (1994) Requested Analysis
Company Name AECOM	Project Name	CA Madana	Temperature (Fahrenheit) Start: Maximum:
å dans -	- Colorat	25H Mentague	Start: Maximum:
5555 Glenwood Hills Pkny SE		old Channel Trail	Stop: Minimum:
"Grand Kapids MI"	49512 CHY MO	otacia Mit	
Project Contact	D 1 40	stague MI	Atmoshpheric Pressure (inches of Hg)
Barny Harding Q gecom, Co	in Project # 6	0215783	Start: Maximum:
Phone # Fay #	Client Purchase Orde	(#	
616-940-4265			Stop: Minimum:
Sampler(s) Name(s) Mychael J. P/	Other weather comment:		
	Air Type Sampling Equipment Info	Start Sampling Information	Stop Sampling Information
	Indoor (I) Canister Canister Flow	Date Time Canister Interior Sampler	
Late Committee First ID (Delict of Collins)	oil Vap (SV) Serial # Size Controller Ambient(A) 6L or 1L Serial #	Date Time Canister Interior Sampler (24 hr Pressure Temp Init. clock) ("Hg) (F)	Date Time Canister Interior Sampler (24 hr Pressure Temp Init. (Hg) (F)
120211	5V A278 6L-FC509	8/16 1604 28 81,9 MJP	8/16 1644 6 78.6 MJP X
12 SGMP-06I	1 A218 1- FC069	1 1620 27.5 81.1	N 1200 5.5 77 1 X X
13 SGMP-07S	A828 - FC381	8/17 0920 29 69.6	8/12 1000 6 707 XX
4 86MP-07I	A636 - FC365	0936 28.5 69.3	10166 76
IS SGMP-085	A840 - FC419	1/33 28 79	1213 5 759 21
16 SGMP-08T	A472 . FC083	1149 28 804	1230 4 763 1
1 SGMP-08D-1	A857 - FC094	1205 26 75,9	1 1245 4 775 1 8 9
86 MP-080-2	A653 FC535	1205 30 75,9	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
1 SGMP-095	A302 - FC282	1558 28 80./	1638 4.5 793
- TO CGND-OST	/ 1017 \ FC009	1614 28 5 79 7	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Turnaround Time (Business Days)	17 140171 @ 17007	Data Deliverable Information	1 4 110713 1/1/21 W 1X 1 1
Standard - 15 Days	TAYAN ORANGA AND INDICATE AND	0.0000000000000000000000000000000000000	* Carbon tetrachloride
10 Day		All NJDEP TO-15 is mandatory Full T1	of Carron remaces to the
Annroyed	Ву:	Comm A	Chleroform
5 Day		Comm B	CIS-UX-DCE
3 Day	ate:	Reduced T2	C15-1,2-DCE trans-1,2-DCE
2 Day		Full T1	PCE
1 Day		Other:	+CE
Other			り かっこ コン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
Straighten states a seasthanne sancann sanc	Sample Custody must be described by	below each time samples change possession, including courier de	Hexachlorosthane
Relinquished of Calibratory Date Time:			ilvery.
1 May Marvair 7/28/	1/1 Atestx	Relinquished by: FeJEx	Bate fine Received by: Mastern
Relippying Day X Date Time:	Received by	Retinquished by:	Date Time: Received by:
Relinquished by: Date Tirgle:	Received by:	Custody Seal #	[4
5 /	5		

JA84264: Chain of Custody Page 2 of 5

AIR
CUTEST

CHAIN OF CUSTODY Air Sampling Field Data Sheet

2235 US Highway 130, Dayton, NJ 08810 Tel: 732.329.0200 Fax: 732.329.3499

FED-EX Tracking #	Bolle Order Control # // 2011 - 9	OF <u>ک</u>
Lab Quote #	Lab Job# 149(1741)	7

	arbakti kaskalasika.			orting Informa	100700	X. 752.32)	and the same of th				en ann an a	404101110111114	We	athor Paramal		::::::::::::::::::::::::::::::::::::::	P.	augetor	1 Analysis
Company Name	AECON	1			Proje	ct Name	35 H	M	onto	SUP	1	Temperature (Start:		Maxim		1271280127JB 7 531	- "	S. F. DELSHEL	1 Arialysis
Address 61	d Rapids	Luy SE	Suit	- 200	Stree	601 6	old o	han	nel'	Tro	,/	Stop:		Minimu	um: —	-			
City Corre	d Rasids	State Zi	499	12	City	Mon	trai	,0		State									
Project Contact	11 11 0	E-mail			Proje				- 2	<u> </u>		Atmoshpheric Start:	Pressure (ir	nches of Hg) Maxim	um:		1		
Phone #	Harding@a	Eax#	10/	7_	Clion	Purchase Ord		<u> 5 78</u>	3										
010-	770-1707				Cilen	r dichase Oid	¢1 #					Stop:		Minirac	JIII:	_		i	
Sampler(s) Name("Michael"	\mathcal{J}_{ℓ}	ADP									Other weather comment:					5	4	İ
			Air Type	Sampling	Equipmen	nent Info Start Sampling Information				#	Stop S	ampling Info	rmation		6	2			
Lab Sample #	Field ID / Point of Colle	ection	Indoor (I) Soil Vap (SV) Ambient(A)	Canister Serial #	Canister Size 6L or 1L	Flow Controller Serial #	Date	Time (24 hr clock)	Canister Pressure (*Hg)	Interior Temp (F)	Sampler Init.	Date	Time (24 hr	Canister Pressure	Interior Temp	Sampler Init.	7	H	
- 7[SGMP-091		SV	A366	61		8/17	1630	29	81,1	MOP	8/17	i ZIO	6	77.0	MID	∇	X	
										- "	,		1,770		177.	, <u>, , , , , , , , , , , , , , , , , , </u>	_	$^{\sim}$	
														-				\exists	
																			1
																-		_	
																		\neg	
Standard -		ays)		ENMINA				Deta I	Deliverable Inf	ormation 🔛				Comment	s / Remarks				<u>M</u> ikili i
Stantialu	10 Day	4					iii		is mandatory	Full T1		+ (a	IDON.	tem	ych lo	ride			
	5 Day	Approv	red By:		_		Com Com			4			10101	1 - 10	r E				
	3 Day		Date:				a e	iced T2		-		Ch Ch Ch	コークリ	1.2-	PCE	-			
	2 Day	4	Date		_		Full	п		1		PC	E						
	1 Day	4					Othe	r:				7	E	, ,	ы				
	Other		Was to	€6ample Cus	tody must	be documented	below each	time samples	change poss	ession, includi	ing courier de	livery.	XOC	4600	setha.	ne	KKSHO	7013WB	Marie of
Relinquished by Jebon	Margin	Date Time	e: // Rece	J Fa	J.F.			Relinquist		I F.	J 00 m.m.) 40	2323243980	ave Time: 20/4 09	F5 E15 E72 B72 614 4 ,5 9,658 9,23-2	Checomenticopies	xtens			
Relipsyright	W Allen	Date Time	Rece	ived by:	<u> </u>			Relinquish	hed by:	<u> </u>			ate Time:	Received I					
Relinquished by:	1 1	Date Time	Rece	ved by:				Custody S	Seal #					14					
5		/-	5_	<u> </u>				<u></u>											
		· · · · · · · · · · · · · · · · · · ·		_															45

JA84264: Chain of Custody

Page 3 of 5

Job#
(REQUIRED)

JA84264

Unused Summa Return Form

X Office AEZOM SSH Project Client

#Flow Controllers

#Summas

FC129 FC 361 FC 098 FC 519 Fc 053 FC 142 FE 328 - 73 12. ٠ ٢٤ 12. 82-21. 92 -A216 A374 A 850 A 778 A 986 A 1000 A 988 Summa#'s

Rec'd Date/Time Rec'd By

Fd X

Rec'd via $\underbrace{ \not A \, X}_{\text{Attach any client paperwork, documentation, or airbills if available)}_{}$

Notes

JA84264: Chain of Custody Page 4 of 5

Accutest Laboratories Sample Receipt Summary

ACCUTEST:

Client: Accutest Job Number JA84264

Project: Date / Time Received: 8/20/2011 No. Coolers: 0 Airbill #'s: **Delivery Method:**

Cooler Security	Υ	or N		Υc	r N	Sa
Custody Seals Present:	✓		3. COC Present:	✓		1
2. Custody Seals Intact:	✓		4. Smpl Dates/Time OK	✓	<u>N</u> □	2
Cooler Temperature		Y or	N			3.

1. Temp criteria achieved:

2. Cooler temp verification: 3. Cooler media:

Quality Control Preservatio	Υ (or N	N/A
1. Trip Blank present / cooler:			✓
2. Trip Blank listed on COC:			V
3. Samples preserved properly:	✓		

4. VOCs headspace free: **✓**

Sample Integrity - Documentation	Υ	or	N	
Sample labels present on bottles:	✓			
2. Container labeling complete:	✓			
3. Sample container label / COC agree:	✓			
Sample Integrity - Condition	Υ_	or	N	
1. Sample recvd within HT:	✓			
2. All containers accounted for:	✓			
3. Condition of sample:		Intac	:t	
Sample Integrity - Instructions	Υ	or	N	N/A
1. Analysis requested is clear:	✓			
2. Bottles received for unspecified tests			✓	
3. Sufficient volume recvd for analysis:	✓			
4. Compositing instructions clear:				✓
5. Filtering instructions clear:				✓

Comments

2235 US Highway 130 F: 732.329.3499

JA84264: Chain of Custody Page 5 of 5

Summa Canister and Flow Controller Log

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Received: 08/20/11

SUMMA	CA	NISTE	ERS											
Shipping							Receiving							
Summa		Vac	Date		SCC	SCC	Sample	Date		Vac	Pres	Final	Dil	
ID	L	" Hg	Out	By	Batch	FileID	Number	In	By	'' Hg	psig	psig	Fact	
A664	6	29.4	07/26/11	FZ	CP4903	W32752.D	JA84264-1	08/22/11	FZ	5			1	
A826	6	29.4	07/26/11	FZ	CP4905	W32742.D	JA84264-2	08/22/11	FZ	5			1	
A772	6	29.4	07/26/11	FZ	CP4905	W32742.D	JA84264-3	08/22/11	FZ	4.5			1	
A304	6	29.4	07/26/11	FZ	CP4905	W32742.D	JA84264-4	08/22/11	FZ	4.5			1	
A279	6	29.4	07/26/11	FZ	CP4902	W32725.D	JA84264-5	08/22/11	FZ	2			1	
A745	6	29.4	07/26/11	FZ	CP4902	W32725.D	JA84264-6	08/22/11	FZ	4			1	
A822	6	29.4	07/26/11	FZ	CP4903	W32752.D	JA84264-7	08/22/11	FZ	6			1	
A671	6	29.4	07/26/11	FZ	CP4903	W32752.D	JA84264-8	08/22/11	FZ	5			1	
A1012	6	29.4	07/26/11	FZ	CP4902	W32725.D	JA84264-9	08/22/11	FZ	3			1	
A820	6	29.4	07/26/11	FZ	CP4905	W32742.D	JA84264-10	08/22/11	FZ	6.5			1	
A278	6	29.4	07/26/11	FZ	CP4903	W32752.D	JA84264-11	08/22/11	FZ	5.5			1	
A218	6	29.4	07/26/11	FZ	CP4909	W32779.D	JA84264-12	08/22/11	FZ	5.5			1	
A828	6	29.4	07/26/11	FZ	CP4902	W32725.D	JA84264-13	08/22/11	FZ	6			1	
A636	6	29.4	07/26/11	FZ	CP4903	W32752.D	JA84264-14	08/22/11	FZ	5			1	
A840	6	29.4	07/26/11	FZ	CP4909	W32779.D	JA84264-15	08/22/11	FZ	5			1	
A472	6	29.4	07/26/11	FZ	CP4903	W32752.D	JA84264-16	08/22/11	FZ	4.5			1	
A857	6	29.4	07/26/11	FZ	CP4905	W32742.D	JA84264-17	08/22/11	FZ	6			1	
A653	6	29.4	07/26/11	FZ	CP4903	W32752.D	JA84264-18	08/22/11	FZ	5			1	
A302	6	29.4	07/26/11	FZ	CP4909	W32779.D	JA84264-19	08/22/11	FZ	5.5			1	
A017	6	29.4	07/26/11	FZ	CP4909	W32779.D	JA84264-20	08/22/11	FZ	5			1	
A366	6	29.4	07/26/11	FZ	CP4909	W32779.D	JA84264-21	08/22/11	FZ	5			1	

Shippin	CONTROL g				Receivin	g	
Flow	Date		cc/	Time	Date	8	cc/
Crtl ID	Out	By	min	hrs.	In	By	min
FC053	07/26/11	FZ	125	.67	08/22/11	FZ	125
FC054	07/26/11	FZ	125	.67	08/22/11	FZ	126
FC063	07/26/11	FZ	125	.67	08/22/11	FZ	127
FC083	07/26/11	FZ	125	.67	08/22/11	FZ	127
FC085	07/26/11	FZ	125	.67	08/22/11	FZ	126
FC098	07/26/11	FZ	125	.67	08/22/11	FZ	125
FC099	07/26/11	FZ	125	.67	08/22/11	FZ	125
FC106	07/26/11	FZ	125	.67	08/22/11	FZ	125
FC142	07/26/11	FZ	125	.67	08/22/11	FZ	125
FC160	07/26/11	FZ	125	.67	08/22/11	FZ	127
FC166	07/26/11	FZ	125	.67	08/22/11	FZ	124
FC179	07/26/11	FZ	125	.67	08/22/11	FZ	125
FC180	07/26/11	FZ	125	.67	08/22/11	FZ	125
FC262	07/26/11	FZ	125	.67	08/22/11	FZ	125

Summa Canister and Flow Controller Log

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Montague, Montague, MI **Project:**

Received: 08/20/11

FLOW (CONTROL						
Shipping	g				Receivin	g	
Flow	Date		cc/	Time	Date		cc/
Crtl ID	Out	By	min	hrs.	In	By	min
FC280	07/26/11	FZ	125	.67	08/22/11	FZ	127
FC282	07/26/11	FZ	125	.67	08/22/11	FZ	123
FC328	07/26/11	FZ	125	.67	08/22/11	FZ	125
FC361	07/26/11	FZ	125	.67	08/22/11	FZ	125
FC365	07/26/11	FZ	125	.67	08/22/11	FZ	124
FC381	07/26/11	FZ	125	.67	08/22/11	FZ	126
FC415	07/26/11	FZ	125	.67	08/22/11	FZ	124
FC485	07/26/11	FZ	125	.67	08/22/11	FZ	126
FC509	07/26/11	FZ	125	.67	08/22/11	FZ	126
FC519	07/26/11	FZ	125	.67	08/22/11	FZ	126
FC522	07/26/11	FZ	125	.67	08/22/11	FΖ	126
FC535	07/26/11	FΖ	125	.67	08/22/11	FZ	124
FC538	07/26/11	FΖ	125	.67	08/22/11	FΖ	127

Accutest Bottle Order(s):

MC-7/11/2011-9

Prep Date	Room Temp(F)	Bar Pres 'Hg
07/26/11	70	29.92

Internal Sample Tracking Chronicle

Conestoga-Rovers & Associates

JA84264 Job No:

Montague, Montague, MI Project No: SSOW# 261-402-D02-3100 PROJ# 9970

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
JA84264-1 SGMP-01S	Collected: 15-AUG-11	16:38 By: MP	Receiv	ved: 20-AUG	-11 By	y: MPC
JA84264-1 JA84264-1		23-AUG-11 21:16 23-AUG-11 22:37				VTO15SL VTO15SL
JA84264-2 SGMP-01I	Collected: 15-AUG-11	17:00 By: MP	Receiv	ved: 20-AUG	-11 B	y: MPC
JA84264-2 JA84264-2		23-AUG-11 23:19 25-AUG-11 01:30				VTO15SL VTO15SL
JA84264-3 SGMP-02S	Collected: 16-AUG-11	09:40 By: MP	Receiv	ved: 20-AUG	-11 By	y: MPC
JA84264-3 JA84264-3		24-AUG-11 00:41 24-AUG-11 01:20				VTO15SL VTO15SL
JA84264-4 SGMP-02I	Collected: 16-AUG-11	09:55 By: MP	Receiv	ved: 20-AUG	-11 B	y: MPC
JA84264-4 JA84264-4		24-AUG-11 02:02 25-AUG-11 02:08				VTO15SL VTO15SL
JA84264-5 SGMP-03S	Collected: 16-AUG-11	11:13 By: MP	Receiv	ved: 20-AUG	-11 By	y: MPC
JA84264-5	TO-15	25-AUG-11 02:50	YMH			VTO15SL
JA84264-6 SGMP-03I	Collected: 16-AUG-11	11:25 By: MP	Receiv	ved: 20-AUG	-11 By	y: MPC
JA84264-6	TO-15	24-AUG-11 04:05	YXC			VTO15SL
JA84264-7 SGMP-04S	Collected: 16-AUG-11	13:46 By: MP	Receiv	ved: 20-AUG	-11 By	y: MPC
JA84264-7	TO-15	24-AUG-11 04:47	YXC			VTO15SL

Internal Sample Tracking Chronicle

Conestoga-Rovers & Associates

JA84264 Job No:

Montague, Montague, MI Project No: SSOW# 261-402-D02-3100 PROJ# 9970

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
JA84264-8 SGMP-04I	Collected: 16-AUG-11	14:02 By: MP	Receiv	ed: 20-AUG	-11 By	: MPC
JA84264-8	TO-15	24-AUG-11 05:29	YXC			VTO15SL
JA84264-9 SGMP-05S	Collected: 16-AUG-11	15:15 By: MP	Receiv	ved: 20-AUG	-11 By	: MPC
JA84264-9	TO-15	24-AUG-11 06:11	YXC			VTO15SL
JA84264-10 SGMP-05I	Collected: 16-AUG-11	15:31 By: MP	Receiv	ed: 20-AUG	-11 By	: MPC
JA84264-10 JA84264-10		25-AUG-11 03:31 25-AUG-11 21:41				VTO15SL VTO15SL
JA84264-11 SGMP-06S	Collected: 16-AUG-11	16:44 By: MP	Receiv	ed: 20-AUG	-11 By	: MPC
JA84264-11	TO-15	25-AUG-11 04:13	YMH			VTO15SL
JA84264-12 SGMP-06I	Collected: 16-AUG-11	17:00 By: MP	Receiv	ed: 20-AUG	-11 By	: MPC
JA84264-12	TO-15	25-AUG-11 05:33	YMH			VTO15SL
JA84264-13 SGMP-07S	Collected: 17-AUG-11	10:00 By: MP	Receiv	ed: 20-AUG	-11 By	: MPC
JA84264-13	TO-15	25-AUG-11 22:23	YMH			VTO15SL
JA84264-14 SGMP-07I	Collected: 17-AUG-11	10:16 By: MP	Receiv	ed: 20-AUG	-11 By	: MPC
JA84264-14	TO-15	25-AUG-11 23:04	YMH			VTO15SL
JA84264-15 SGMP-08S	Collected: 17-AUG-11	12:13 By: MP	Receiv	ed: 20-AUG	-11 By	: MPC

Internal Sample Tracking Chronicle

Conestoga-Rovers & Associates

JA84264 Job No:

Montague, Montague, MI Project No: SSOW# 261-402-D02-3100 PROJ# 9970

Sample Number Method	Analyzed	By Prepped By	Test Codes
JA84264-15 TO-15	25-AUG-11 23:46	YMH	VTO15SL
JA84264-16 Collected: SGMP-08I	17-AUG-11 12:30 By: MP	Received: 20-AUG-11	By: MPC
JA84264-16 TO-15	26-AUG-11 01:06	YMH	VTO15SL
JA84264-17 Collected: SGMP-08D-1	17-AUG-11 12:45 By: MP	Received: 20-AUG-11	By: MPC
JA84264-17 TO-15	26-AUG-11 01:48	YMH	VTO15SL
JA84264-18 Collected: SGMP-08D-2	17-AUG-11 12:45 By: MP	Received: 20-AUG-11	By: MPC
JA84264-18 TO-15	26-AUG-11 02:29	YMH	VTO15SL
JA84264-19 Collected: SGMP-09S	17-AUG-11 16:38 By: MP	Received: 20-AUG-11	By: MPC
JA84264-19 TO-15	26-AUG-11 03:11	YMH	VTO15SL
JA84264-20 Collected: SGMP-09I	17-AUG-11 16:54 By: MP	Received: 20-AUG-11	By: MPC
JA84264-20 TO-15	26-AUG-11 03:52	YMH	VTO15SL
JA84264-21 Collected: SGMP-09D	17-AUG-11 17:10 By: MP	Received: 20-AUG-11	By: MPC
JA84264-21 TO-15	26-AUG-11 05:13	YMH	VTO15SL

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Surrogate Recovery Summaries

Method: TO-15

Method Blank Summary

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V3W935-MB	3W23653.D	1	08/23/11	YXC	n/a	n/a	V3W935

The QC reported here applies to the following samples:

JA84264-1, JA84264-2, JA84264-3, JA84264-4, JA84264-6, JA84264-7, JA84264-8, JA84264-9

CAS No.	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	Carbon tetrachloride	ND	0.20	0.040	ppbv	ND	1.3	ug/m3
156-60-5	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	Isopropyl Alcohol	ND	0.20	0.059	ppbv	ND	0.49	ug/m3
127-18-4	Tetrachloroethylene	ND	0.040	0.028	ppbv	ND	0.27	ug/m3
79-01-6	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No. **Surrogate Recoveries** Limits 460-00-4 4-Bromofluorobenzene 65-128% 93%

Page 1 of 1

Method: TO-15

Method Blank Summary

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V2W1362-MB	2W32333.D	1	08/24/11	YMH	n/a	n/a	V2W1362

The QC reported here applies to the following samples:

JA84264-2, JA84264-4, JA84264-5, JA84264-10, JA84264-11, JA84264-12

CAS No.	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	Carbon tetrachloride	ND	0.20	0.040	ppbv	ND	1.3	ug/m3
156-60-5	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	Isopropyl Alcohol	ND	0.20	0.059	ppbv	ND	0.49	ug/m3
127-18-4	Tetrachloroethylene	ND	0.040	0.028	ppbv	ND	0.27	ug/m3
79-01-6	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No. Surrogate Recoveries Limits

460-00-4 4-Bromofluorobenzene 79% 65-128%

Method: TO-15

Method Blank Summary

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Sample V2W1362-MB	File ID 2W32355.D	DF	Analyzed 08/25/11	By YMH	, -	, •	Analytical Batch V2W1362	
V 2 W 1302-MD	2W 32333.D	1	08/23/11	IMI	n/a	n/a	V 2 W 1302	

The QC reported here applies to the following samples:

JA84264-2, JA84264-4, JA84264-5, JA84264-10, JA84264-11, JA84264-12

CAS No.	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	Carbon tetrachloride	ND	0.20	0.040	ppbv	ND	1.3	ug/m3
156-60-5	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	Isopropyl Alcohol	ND	0.20	0.059	ppbv	ND	0.49	ug/m3
127-18-4	Tetrachloroethylene	ND	0.040	0.028	ppbv	ND	0.27	ug/m3
79-01-6	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No. **Surrogate Recoveries** Limits

460-00-4 4-Bromofluorobenzene 65-128% 79%

Page 1 of 1

Method: TO-15

Method Blank Summary

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Sample V2W1363-MB	File ID 2W32357.D	DF 1	Analyzed 08/25/11	By YMH	Prep Date n/a	Prep Batch n/a	Analytical Batch V2W1363

The QC reported here applies to the following samples:

 $JA84264-10,\ JA84264-13,\ JA84264-14,\ JA84264-15,\ JA84264-16,\ JA84264-17,\ JA84264-18,\ JA84264-19,\ JA84264-20,\ JA84264-21$

CAS No.	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	Carbon tetrachloride	ND	0.20	0.040	ppbv	ND	1.3	ug/m3
156-60-5	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	Isopropyl Alcohol	ND	0.20	0.059	ppbv	ND	0.49	ug/m3
127-18-4	Tetrachloroethylene	ND	0.040	0.028	ppbv	ND	0.27	ug/m3
79-01-6	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No. Surrogate Recoveries Limits

460-00-4 4-Bromofluorobenzene 77% 65-128%

Page 1 of 1

Method: TO-15

Method Blank Summary

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Sample VW1338-MB	File ID W32720.D	DF 1	Analyzed 07/15/11	By YMH	Prep Date n/a	Prep Batch n/a	Analytical Batch VW1338

The QC reported here applies to the following samples:

VW1338-SCC

CAS No.	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	Carbon tetrachloride	ND	0.20	0.040	ppbv	ND	1.3	ug/m3
156-60-5	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	Isopropyl Alcohol	ND	0.20	0.059	ppbv	ND	0.49	ug/m3
127-18-4	Tetrachloroethylene	ND	0.040	0.028	ppbv	ND	0.27	ug/m3
79-01-6	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No. Surrogate Recoveries Limits

460-00-4 4-Bromofluorobenzene 88% 65-128%

Method: TO-15

Method Blank Summary

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VW1339-MB	W32747.D	1	07/18/11	YMH	n/a	n/a	VW1339

The QC reported here applies to the following samples:

VW1339-SCC

CAS No.	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	Carbon tetrachloride	ND	0.20	0.040	ppbv	ND	1.3	ug/m3
156-60-5	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	Isopropyl Alcohol	ND	0.20	0.059	ppbv	ND	0.49	ug/m3
127-18-4	Tetrachloroethylene	ND	0.040	0.028	ppbv	ND	0.27	ug/m3
79-01-6	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No.	Surrogate Recoveries		Limits
460-00-4	4-Bromofluorobenzene	88%	65-128%

CAS No.	Tentatively Identified Compounds	R.T.	Est. Conc.	Units Q
	Total TIC, Volatile ^a		0	ppbv

⁽a) Isobutylene mass spectra is not detected in this chromatographic run.

Method: TO-15

Method Blank Summary

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VW1340-MB	W32775.D	1	07/19/11	YMH	n/a	n/a	VW1340

The QC reported here applies to the following samples:

VW1340-SCC

CAS No.	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	Carbon tetrachloride	ND	0.20	0.040	ppbv	ND	1.3	ug/m3
156-60-5	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	Isopropyl Alcohol	ND	0.20	0.059	ppbv	ND	0.49	ug/m3
127-18-4	Tetrachloroethylene	ND	0.040	0.028	ppbv	ND	0.27	ug/m3
79-01-6	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No. Surrogate Recoveries Limits
460-00-4 4-Bromofluorobenzene 89% 65-128%

Method Blank Summary

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Sample V3W934-MB	File ID 3W23625.D	DF 1	Analyzed 08/19/11	By YXC	Prep Date n/a	Prep Batch n/a	Analytical Batch V3W934

The QC reported here applies to the following samples:

Method: TO-15

V3W934-SCC

CAS No.	Compound	Result	RL	MDL	Units Q	Result	RL	Units
56-23-5 127-18-4	Carbon tetrachloride Tetrachloroethylene	ND ND	0.20 0.040	0.040 0.028	ppbv ppbv	ND ND	1.3 0.27	ug/m3 ug/m3
CAS No.	Surrogate Recoveries		Limits					
460-00-4	4-Bromofluorobenzene	91%	65-128	3%				

Method: TO-15

Blank Spike/Blank Spike Duplicate Summary

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Sample V3W935-BS V3W935-BSD	File ID 3W23651.D 3W23652.D	Analyzed 08/23/11 08/23/11	By YXC YXC	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch V3W935 V3W935

The QC reported here applies to the following samples:

JA84264-1, JA84264-2, JA84264-3, JA84264-4, JA84264-6, JA84264-7, JA84264-8, JA84264-9

CAS No.	Compound	Spike ppbv	BSP ppbv	BSP %	BSD ppbv	BSD %	RPD	Limits Rec/RPD
67-66-3	Chloroform	10	10.6	106	10.0	100	6	70-130/30
56-23-5	Carbon tetrachloride	10	10.0	100	9.4	94	6	70-130/30
156-60-5	trans-1,2-Dichloroethylene	10	10.4	104	9.6	96	8	70-130/30
156-59-2	cis-1,2-Dichloroethylene	10	10.2	102	9.4	94	8	70-130/30
67-72-1	Hexachloroethane	10	ND	0*	ND	0*	nc	70-130/30
67-63-0	Isopropyl Alcohol	10	11.1	111	10.2	102	8	70-130/30
127-18-4	Tetrachloroethylene	10	9.1	91	8.3	83	9	70-130/30
79-01-6	Trichloroethylene	10	9.8	98	8.9	89	10	70-130/30

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
460-00-4	4-Bromofluorobenzene	98%	99%	65-128%

Method: TO-15

Blank Spike/Blank Spike Duplicate Summary

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
V2W1362-BS	2W32331.D	1	08/24/11	YMH	n/a	n/a	V2W1362
V2W1362-BSD	2W32332.D	1	08/24/11	YMH	n/a	n/a	V2W1362

The QC reported here applies to the following samples:

JA84264-2, JA84264-4, JA84264-5, JA84264-10, JA84264-11, JA84264-12

CAS No.	Compound	Spike ppbv	BSP ppbv	BSP %	BSD ppbv	BSD %	RPD	Limits Rec/RPD
67-66-3	Chloroform	10	10.9	109	11.2	112	3	70-130/30
56-23-5	Carbon tetrachloride	10	10.9	109	11.3	113	4	70-130/30
156-60-5	trans-1,2-Dichloroethylene	10	10.1	101	10.5	105	4	70-130/30
156-59-2	cis-1,2-Dichloroethylene	10	9.9	99	10.2	102	3	70-130/30
67-72-1	Hexachloroethane	10	ND	0*	ND	0*	nc	70-130/30
67-63-0	Isopropyl Alcohol	10	11.1	111	11.5	115	4	70-130/30
127-18-4	Tetrachloroethylene	10	10.2	102	10.5	105	3	70-130/30
79-01-6	Trichloroethylene	10	10.2	102	10.5	105	3	70-130/30

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
460-00-4	4-Bromofluorobenzene	89%	91%	65-128%

Method: TO-15

Blank Spike/Blank Spike Duplicate Summary

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V2W1363-BS	2W32353.D	1	08/25/11	YMH	n/a	n/a	V2W1363
V2W1363-BSD	2W32354.D	1	08/25/11	YMH	n/a	n/a	V2W1363

The QC reported here applies to the following samples:

JA84264-10, JA84264-13, JA84264-14, JA84264-15, JA84264-16, JA84264-17, JA84264-18, JA84264-19, JA84264-20, JA84264-21

CAS No.	Compound	Spike ppbv	BSP ppbv	BSP %	BSD ppbv	BSD %	RPD	Limits Rec/RPD
67-66-3	Chloroform	10	10.8	108	11.7	117	8	70-130/30
56-23-5	Carbon tetrachloride	10	10.7	107	11.9	119	11	70-130/30
156-60-5	trans-1,2-Dichloroethylene	10	10	100	11.1	111	10	70-130/30
156-59-2	cis-1,2-Dichloroethylene	10	9.9	99	10.8	108	9	70-130/30
67-72-1	Hexachloroethane	10	ND	0*	ND	0*	nc	70-130/30
67-63-0	Isopropyl Alcohol	10	10.9	109	12.1	121	10	70-130/30
127-18-4	Tetrachloroethylene	10	9.9	99	11.1	111	11	70-130/30
79-01-6	Trichloroethylene	10	9.9	99	11.1	111	11	70-130/30

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
460-00-4	4-Bromofluorobenzene	88%	91%	65-128%

Method: TO-15

Blank Spike/Blank Spike Duplicate Summary Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VW1338-BS	W32718.D	1	07/15/11	YMH	n/a	n/a	VW1338
VW1338-BSD	W32719.D	1	07/15/11	YMH	n/a	n/a	VW1338

The QC reported here applies to the following samples:

VW1338-SCC

CAS No.	Compound	Spike ppbv	BSP ppbv	BSP %	BSD ppbv	BSD %	RPD	Limits Rec/RPD
67.66.2	Chlanafann	10	0.6	06	10.2	102	6	70 120/20
67-66-3	Chloroform	10	9.6	96	10.2	102	6	70-130/30
56-23-5	Carbon tetrachloride	10	8.8	88	9.4	94	7	70-130/30
156-60-5	trans-1,2-Dichloroethylene	10	10.4	104	11.0	110	6	70-130/30
156-59-2	cis-1,2-Dichloroethylene	10	9.7	97	10.3	103	6	70-130/30
67-72-1	Hexachloroethane	10	ND	0*	ND	0*	nc	70-130/30
67-63-0	Isopropyl Alcohol	10	10	100	10.6	106	6	70-130/30
127-18-4	Tetrachloroethylene	10	10.4	104	11.0	110	6	70-130/30
79-01-6	Trichloroethylene	10	10.2	102	11.0	110	8	70-130/30

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
460-00-4	4-Bromofluorobenzene	99%	97%	65-128%

Method: TO-15

Blank Spike/Blank Spike Duplicate Summary

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VW1339-BS	W32745.D	1	07/18/11	YMH	n/a	n/a	VW1339
VW1339-BSD	W32746.D	1	07/18/11	YMH	n/a	n/a	VW1339

The QC reported here applies to the following samples:

VW1339-SCC

		Spike	BSP	BSP	BSD	BSD		Limits
CAS No.	Compound	ppbv	ppbv	%	ppbv	%	RPD	Rec/RPD
67-66-3	Chloroform	10	10	100	9.4	94	6	70-130/30
56-23-5	Carbon tetrachloride	10	9.2	92	8.7	87	6	70-130/30
156-60-5	trans-1,2-Dichloroethylene	10	10.5	105	10.0	100	5	70-130/30
156-59-2	cis-1,2-Dichloroethylene	10	9.9	99	9.4	94	5	70-130/30
67-72-1	Hexachloroethane	10	ND	0*	ND	0*	nc	70-130/30
67-63-0	Isopropyl Alcohol	10	10.1	101	9.4	94	7	70-130/30
127-18-4	Tetrachloroethylene	10	10.5	105	10.3	103	2	70-130/30
79-01-6	Trichloroethylene	10	10.5	105	9.9	99	6	70-130/30

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
460-00-4	4-Bromofluorobenzene	96%	96%	65-128%

Method: TO-15

Blank Spike/Blank Spike Duplicate Summary

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VW1340-BS	W32773.D	1	07/19/11	YMH	n/a	n/a	VW1340
VW1340-BSD	W32774.D	1	07/19/11	YMH	n/a	n/a	VW1340

The QC reported here applies to the following samples:

VW1340-SCC

CAS No.	Compound	Spike ppbv	BSP ppbv	BSP %	BSD ppbv	BSD %	RPD	Limits Rec/RPD
67-66-3	Chloroform	10	9.8	98	9.5	95	3	70-130/30
56-23-5	Carbon tetrachloride	10	9.0	90	8.8	88	2	70-130/30
156-60-5	trans-1,2-Dichloroethylene	10	10.4	104	10.1	101	3	70-130/30
156-59-2	cis-1,2-Dichloroethylene	10	9.7	97	9.4	94	3	70-130/30
67-72-1	Hexachloroethane	10	ND	0*	ND	0*	nc	70-130/30
67-63-0	Isopropyl Alcohol	10	9.8	98	9.4	94	4	70-130/30
127-18-4	Tetrachloroethylene	10	10.6	106	10.4	104	2	70-130/30
79-01-6	Trichloroethylene	10	10.5	105	10.2	102	3	70-130/30

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
460-00-4	4-Bromofluorobenzene	95%	96%	65-128%

Method: TO-15

Blank Spike/Blank Spike Duplicate Summary

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Sample V3W934-BS V3W934-BSD	File ID 3W23623.D 3W23624.D	Analyzed 08/19/11 08/19/11	By YXC YXC	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch V3W934 V3W934

The QC reported here applies to the following samples:

V3W934-SCC

CAS No.	Compound	Spike ppbv	BSP ppbv	BSP %	BSD ppbv	BSD %	RPD	Limits Rec/RPD
56-23-5 127-18-4	Carbon tetrachloride Tetrachloroethylene	10 10	9.0 7.9	90 79	8.7 7.7	87 77	3	70-130/30 70-130/30
CAS No.	Surrogate Recoveries	BSP	BS	D	Limits			
460-00-4	4-Bromofluorobenzene	98%	100)%	65-1289	6		

Method: TO-15

Duplicate Summary

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
JA84264-1DUP	3W23664.D	1	08/23/11	YXC	n/a	n/a	V3W935
JA84264-1	3W23663.D	1	08/23/11	YXC	n/a	n/a	V3W935
JA84264-1	3W23665.D	1	08/23/11	YXC	n/a	n/a	V3W935

The QC reported here applies to the following samples:

JA84264-1, JA84264-2, JA84264-3, JA84264-4, JA84264-6, JA84264-7, JA84264-8, JA84264-9

CAS No.	Compound	JA84264-1 ppbv Q	DUP ppbv Q	RPD Lin	nits
67-66-3	Chloroform	0.88	0.88	0 12	
56-23-5	Carbon tetrachloride	121 ^a	116 E	4 10	
156-60-5	trans-1,2-Dichloroethylene	ND	ND	nc 10	
156-59-2	cis-1,2-Dichloroethylene	ND	ND	nc 10	
67-72-1	Hexachloroethane	ND	ND	nc 20	
67-63-0	Isopropyl Alcohol	0.25	0.27	8 26	
127-18-4	Tetrachloroethylene	365 a	333 E	9 17	
79-01-6	Trichloroethylene	0.27	0.28	4 13	
CAS No.	Surrogate Recoveries	DUP	JA84264-1	JA84264-1	Limits
460-00-4	4-Bromofluorobenzene	88%	90%	87%	65-128%

⁽a) Result is from Run #2.

Method: TO-15

Duplicate Summary Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
JA84264-5DUP	2W32356.D	1	08/25/11	YMH	n/a	n/a	V2W1362
JA84264-5	2W32347.D	1	08/25/11	YMH	n/a	n/a	V2W1362

The QC reported here applies to the following samples:

JA84264-2, JA84264-4, JA84264-5, JA84264-10, JA84264-11, JA84264-12

CAS No.	Compound	JA84264-5 ppbv Q	DUP ppbv Q	RPD Limits
67-66-3	Chloroform	ND	ND	nc 12
56-23-5	Carbon tetrachloride	0.23	0.22	4 10
156-60-5	trans-1,2-Dichloroethylene	ND	ND	nc 10
156-59-2	cis-1,2-Dichloroethylene	ND	ND	nc 10
67-72-1	Hexachloroethane	ND	ND	nc 20
67-63-0	Isopropyl Alcohol	12.2	8.7	33* a 26
127-18-4	Tetrachloroethylene	13.5	11.9	13 17
79-01-6	Trichloroethylene	0.27	0.23	16* a 13
CAS No.	Surrogate Recoveries	DUP	JA84264-5	Limits
460-00-4	4-Bromofluorobenzene	82%	81%	65-128%

⁽a) Outside control limits.

Method: TO-15

Duplicate Summary

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Sample JA84314-3DUP JA84314-3	File ID 2W32364.D 2W32363.D	Analyzed 08/25/11 08/25/11	By YMH YMH	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch V2W1363 V2W1363

The QC reported here applies to the following samples:

JA84264-10, JA84264-13, JA84264-14, JA84264-15, JA84264-16, JA84264-17, JA84264-18, JA84264-19, JA84264-20, JA84264-21

CAS No.	Compound	JA84314-3 ppbv Q	DUP ppbv Q	RPD	Limits
67-66-3	Chloroform	ND	ND	nc	12
56-23-5	Carbon tetrachloride	ND	ND	nc	10
156-60-5	trans-1,2-Dichloroethylene	ND	ND	nc	10
156-59-2	cis-1,2-Dichloroethylene	ND	ND	nc	10
67-72-1	Hexachloroethane	ND	ND	nc	20
67-63-0	Isopropyl Alcohol	58.1	52.2	11	26
127-18-4	Tetrachloroethylene	1.6	1.9	17	17
79-01-6	Trichloroethylene	1.6	1.7	6	13
CAC N-	Summarda Baranasia	DUD	1404214 2	T ::4	
CAS No.	Surrogate Recoveries	DUP	JA84314-3	Limits	
460-00-4	4-Bromofluorobenzene	83%	81%	65-1289	%

Summa Cleaning Certification

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
VW1338-SCC	W32725.D	1	07/15/11	YMH	n/a	n/a	VW1338	

The QC reported here (Summa A368) applies to the following samples: Method: TO-15

Batch CP4902 cleaned 07/07/11: JA84264-5(A279), JA84264-6(A745), JA84264-9(A1012), JA84264-13(A828)

CAS No.	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	Carbon tetrachloride	ND	0.20	0.040	ppbv	ND	1.3	ug/m3
156-60-5	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	Isopropyl Alcohol	ND	0.20	0.059	ppbv	ND	0.49	ug/m3
127-18-4	Tetrachloroethylene	ND	0.040	0.028	ppbv	ND	0.27	ug/m3
79-01-6	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No. **Surrogate Recoveries** Limits 460-00-4 4-Bromofluorobenzene

85% 65-128%

Summa Cleaning Certification

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Sample VW1338-SCC	File ID W32742.D	DF 1	Analyzed 07/16/11	By YMH	Prep Date n/a	Prep Batch n/a	Analytical Batch VW1338

The QC reported here (Summa A1006) applies to the following samples: Method: TO-15

Batch CP4905 cleaned 07/11/11: JA84264-2(A826), JA84264-3(A772), JA84264-4(A304), JA84264-10(A820), JA84264-17(A857)

CAS No.	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	Carbon tetrachloride	ND	0.20	0.040	ppbv	ND	1.3	ug/m3
156-60-5	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	Isopropyl Alcohol	ND	0.20	0.059	ppbv	ND	0.49	ug/m3
127-18-4	Tetrachloroethylene	ND	0.040	0.028	ppbv	ND	0.27	ug/m3
79-01-6	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No. Surrogate Recoveries Limits

460-00-4 4-Bromofluorobenzene 84% 65-128%

Summa Cleaning Certification

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Sample VW1339-SCC	File ID W32752.D	DF 1	Analyzed 07/18/11	By YMH	Prep Date n/a	Prep Batch n/a	Analytical Batch VW1339

The QC reported here (Summa A854) applies to the following samples: Method: TO-15

Batch CP4903 cleaned 07/08/11: JA84264-1(A664), JA84264-7(A822), JA84264-8(A671), JA84264-11(A278), JA84264-14(A636), JA84264-16(A472), JA84264-18(A653)

CAS No.	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	Carbon tetrachloride	ND	0.20	0.040	ppbv	ND	1.3	ug/m3
156-60-5	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	Isopropyl Alcohol	ND	0.20	0.059	ppbv	ND	0.49	ug/m3
127-18-4	Tetrachloroethylene	ND	0.040	0.028	ppbv	ND	0.27	ug/m3
79-01-6	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No. Surrogate Recoveries Limits

460-00-4 4-Bromofluorobenzene 84% 65-128%

Summa Cleaning Certification

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VW1340-SCC	W32779.D	1	07/19/11	YMH	n/a	n/a	VW1340

The QC reported here (Summa A483) applies to the following samples: Method: TO-15

Batch CP4909 cleaned 07/12/11: JA84264-12(A218), JA84264-15(A840), JA84264-19(A302), JA84264-20(A017), JA84264-21(A366)

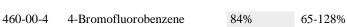
CAS No.	Compound	Result	RL	MDL	Units Q	Result	RL	Units
67-66-3	Chloroform	ND	0.20	0.028	ppbv	ND	0.98	ug/m3
56-23-5	Carbon tetrachloride	ND	0.20	0.040	ppbv	ND	1.3	ug/m3
156-60-5	trans-1,2-Dichloroethylene	ND	0.20	0.033	ppbv	ND	0.79	ug/m3
156-59-2	cis-1,2-Dichloroethylene	ND	0.20	0.038	ppbv	ND	0.79	ug/m3
67-72-1	Hexachloroethane	ND	0.20	0.026	ppbv	ND	1.9	ug/m3
67-63-0	Isopropyl Alcohol	ND	0.20	0.059	ppbv	ND	0.49	ug/m3
127-18-4	Tetrachloroethylene	ND	0.040	0.028	ppbv	ND	0.27	ug/m3
79-01-6	Trichloroethylene	ND	0.040	0.033	ppbv	ND	0.21	ug/m3

CAS No. **Surrogate Recoveries** Limits 460-00-4 4-Bromofluorobenzene 84% 65-128%

Summa Cleaning Certification

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates


Project: Montague, Montague, MI

Sample V3W934-SCC	File ID 3W23647.D	DF 1	Analyzed 08/20/11	By YXC	Prep Date n/a	Prep Batch n/a	Analytical Batch V3W934

The QC reported here (Summa A799) applies to the following samples: Method: TO-15

Batch CP4964 cleaned 08/18/11: JA84264-2(A781), JA84264-4(A489)

CAS No.	Compound	Result	RL	MDL	Units Q	Result	RL	Units
56-23-5 127-18-4	Carbon tetrachloride Tetrachloroethylene	ND ND	0.20 0.040	0.040 0.028	ppbv ppbv	ND ND	1.3 0.27	ug/m3 ug/m3
CAS No.	Surrogate Recoveries		Limits					

Volatile Surrogate Recovery Summary

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Method: TO-15 Matrix: AIR

Samples and QC shown here apply to the above method

Lab	Lab	
Sample ID	File ID	S1
JA84264-1	3W23665.D	87.0
JA84264-1	3W23663.D	90.0
JA84264-2	2W32345.D	75.0
JA84264-2	3W23666.D	88.0
JA84264-3	3W23669.D	86.0
JA84264-3	3W23668.D	85.0
JA84264-4	2W32346.D	73.0
JA84264-4	3W23670.D	87.0
JA84264-5	2W32347.D	81.0
JA84264-6	3W23672.D	91.0
JA84264-7	3W23673.D	90.0
JA84264-8	3W23674.D	91.0
JA84264-9	3W23675.D	89.0
JA84264-10	2W32367.D	75.0
JA84264-10	2W32348.D	78.0
JA84264-11	2W32349.D	79.0
JA84264-12	2W32350.D	86.0
JA84264-13	2W32368.D	73.0
JA84264-14	2W32369.D	79.0
JA84264-15	2W32370.D	78.0
JA84264-16	2W32371.D	89.0
JA84264-17	2W32372.D	84.0
JA84264-18	2W32373.D	80.0
JA84264-19	2W32374.D	89.0
JA84264-20	2W32375.D	87.0
JA84264-21	2W32376.D	87.0
JA84264-1DUP	3W23664.D	88.0
JA84264-5DUP	2W32356.D	82.0
JA84314-3DUP	2W32364.D	83.0
V2W1362-BS	2W32331.D	89.0
V2W1362-BSD	2W32332.D	91.0
V2W1362-MB	2W32333.D	79.0
V2W1362-MB	2W32355.D	79.0
V2W1363-BS	2W32353.D	88.0
V2W1363-BSD	2W32354.D	91.0
V2W1363-MB	2W32357.D	77.0
V3W934-SCC	3W23647.D	84.0
V3W935-BS	3W23651.D	98.0
V3W935-BSD	3W23652.D	99.0
V3W935-MB	3W23653.D	93.0

Volatile Surrogate Recovery Summary

Job Number: JA84264

Account: CRANYNF Conestoga-Rovers & Associates

Project: Montague, Montague, MI

Method: TO-15 Matrix: AIR

Samples and QC shown here apply to the above method

Lab	Lab	
Sample ID	File ID	S1
VW1338-SCC	W32725.D	85.0
VW1338-SCC	W32742.D	84.0
VW1339-SCC	W32752.D	84.0
VW1340-SCC	W32779.D	84.0
V3W934-BS	3W23623.D	98.0
V3W934-BSD	3W23624.D	100.0
V3W934-MB	3W23625.D	91.0
VW1338-BS	W32718.D	99.0
VW1338-BSD	W32719.D	97.0
VW1338-MB	W32720.D	88.0
VW1339-BS	W32745.D	96.0
VW1339-BSD	W32746.D	96.0
VW1339-MB	W32747.D	88.0
VW1340-BS	W32773.D	95.0
VW1340-BSD	W32774.D	96.0
VW1340-MB	W32775.D	89.0

Surrogate Recovery Compounds Limits

S1 = 4-Bromofluorobenzene 65-128%

AECOM Environment

Appendix C

Soil Gas Sampling Field Forms

Former Occidental Chemical Site SG Sampling Field Form Montague, MI

							Appropriate the subsection of the last of	-	-	-	-	-	
Location	Sample Name	Cannister	Controller	Sample Time Start Sample Time End	Sample Time End	Leak Check	Initial Vacuum ('Hg)	Initial Temp (F)	Initial Barometric Pressure ("Hg)	Final Vacuum ("Hg)	Final Temp F (F)	Final Barometric Pressure ("Hg)	PID Readings
SGMP-01	SEMP-01S	A664	FC063	1558	1638	\	28.0	5.28	29,27	0.3	84,4	29,27	NA
8/15/11	S6MP-02I	A826	FC106	1620	1700	<	38,5	1.58	29,27	5,0	80,8	29,27	NA
												,	
S6MP-02	SEMP-ORS	A772	FC522	0857	0940	5	29,0	66,6	39,28	5.0	70.76	29,28	NA
8/16/11	SGMP-ORI	A304	FC 160	0913	0955	5	30.0	68,0	36,98	70	72,0 :	29,28	NA
SGMP-03	SGMP-035	A279	FC085	1028	1113	7	0,96	74,7	29,30	0,0	76.10	29,31	NA
8/16/11	SGMP-03I	A745	FC/80	1044	1125	<	30.0	75,2	29,30	0,0	772	24,31	MA
SGMP-04	SGMP-OUS ASSI	4822	FC485	1306	1346	1	30,0	89.1	29,38	0,7	9.58	29.41	A
8/16/11	SGMP-OYI	A671	FC 166	1322	1402	7	29,5	88,5	39,38	4.5	8,38	29,43	NA
2010000	530-9495	4/6/2	FC 762	1435	15/5	5	30,0	1.18	29,42	6	78.3	29,38	NA
	SGMP-05I	A820		1511	1531	>	28.0	5,08	29,42	0	86,4	29,38	NA
SGMP-06	S6MP-06S	A278	FC509	1604	1644	<	28.0	6/18	29,37	6.0	78,6	29,35	NA
11/01/8	SGMP-OGI A218	A218	FC069	1620	1700	7	27.5	1.18	29,37	5,5	77.0	29,33	NA
SGMP-07	SGMP-07S	A828	FC381	0920	1000	<	29,0	9.16	29,30	6,0	70.7	29,30	NA
11/11/8	SGMP-OTI	A 636	FC365	0936 1016	1016	<	28.5	643	29,30	6.0	71,6	29,30	NA

AECOM

Sampler Name: Date:

Sample Methodolgy: Sample Analytical Meth Project Number:

(#d±++

GEN 2000 used to-

By collection

Page_

Comments:

Logfort

K Check

SGMP-015/07

9/9/0

INA Used,

Former Occidental Chemical Site SG Sampling Field Form Montague, MI

3	00 138	1 2000	GEM	Joed.	54. D	19190 BF. rea	Check Heck	Ca)	Comments:	4827+7511 0100050	6449 10001	1 51-01 1 51-01 1 518 1 518	Sampler Name: Date: Sample Methodolgy: Sample Analytical Meth Project Number:
									×			4	

			- 1	H.									
NA	29,30	770	0,0	18,96		6E	<	1710	1630	FC538	A366	U60-JM-55	
MA	29,30	577	0.2	18,96	79,7	5,86	5	1654	1614	FC099			11/4/18
NA	29,30	79,3	5,4	29,31	1,08	S S	1	1638	8551	FC282	A302	SGMP-09S	SGMP-09
F	0(1)		Ĉ	01117		30	_	101)	1107	FC575	H677	5677-0812	Pupe
NA	39, 33	77,5	100	_	3/0	36	1	1345	205	36	1/2	SGMP-08D1	>
NA	29,33	76.3	4,0		7	88	7	1230	1149	FC 083	A472	SOMP-08I	11/1/18
NA	29,34	75.9	5,0	29,32	79.0	28	7	1213	1133	PC415	A840	S6MP-08S	SCMP-08
PID Readings	Final Barometric Pressure ("Hg)	Final Temp (F)	Final Vacuum ("Hg)	Initial Barometric Pressure ("Hg)	Initial Temp (F)	Initial Vacuum ('Hg)	Leak Check	Sample Time End	Sample Time Start Sample Time End	Controller	Cannister	Sample Name	Location

Page of N

AECOM Environment

Appendix D

Carbon Dioxide and Oxygen Soil Gas Measurements

APPENDIX D

Carbon Dioxide and Oxygen Measurements Collected During Soil Gas Purging August 2011

Gas Measurements	Units	SGMP-01		SGMP-02		SGMP-03		SGMP-04		SGMP-05	
GEM Landfill Gas Meter	Offics	5	15	5	15	5	15	5	15	5	15
Soil Gas O2	%	19.9	20.3	18.9	19.4	19.8	20	20	19.9	20.4	20.5
Soil Gas CO2	%	1	1.5	2.2	1.6	1	0.8	0.9	0.8	0.5	0.4

Gas Measurements	Units	SGMP-06		SGMP-07		SGMP-08			SGMP-09		
GEM Landfill Gas Meter	Ullits	5	15	5	15	5	15	30	5	15	30
Soil Gas O2	%	20.6	20.6	20.1	20.1	20	20.6	20.2	20.5	20.4	20.5
Soil Gas CO2	%	0.3	0.4	0.8	0.9	0.6	0.6	0.7	0.4	0.5	0.4

Ambient O2	20.90%
Ambient CO2	0.00%